[发明专利]一种基于深度学习的变电站巡检机器人辅助导航方法在审

专利信息
申请号: 202110107475.0 申请日: 2021-01-27
公开(公告)号: CN112818806A 公开(公告)日: 2021-05-18
发明(设计)人: 范松海;张葛祥;陈缨;杨强;刘益岑;戴忠余;吴天宝;朱明;刘小江;杨强;马小敏;罗磊;龚奕宇 申请(专利权)人: 国网四川省电力公司电力科学研究院;成都信息工程大学;四川达曼正特科技有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/34;G06K9/62;G06N3/04;G06N3/08
代理公司: 成都盈信专利代理事务所(普通合伙) 51245 代理人: 崔建中
地址: 610095 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 变电站 巡检 机器人 辅助 导航 方法
【说明书】:

发明公开了一种基于深度学习的变电站巡检机器人辅助导航方法,包括步骤:采集变电站环境的可见光图像,对深度学习目标检测模型进行训练,得到适用于变电站的最优深度学习目标检测模型;将巡检机器人的超声波雷达实际探测的区域投影到可见光图像中,并对可见光图像进行分割,获得仅包含超声波雷达实际探测区域的图像;生成安全判定结果;将安全判定结果输出到巡检机器人导航决策终端,辅助巡检机器人导航。本发明通过变电站内障碍物的图像数据建立和训练深度学习目标检测模型,使得巡检机器人具备识别变电站障碍物和处理无危险障碍物覆盖道路的能力,提高了巡检机器人的巡检的智能性和效率。

技术领域

本发明涉及变电站设备技术领域,尤其涉及一种基于深度学习的变电站巡检机器人辅助导航方法。

背景技术

变电站作为电力网络的枢纽,负责电力网络中电压的升、降调节及电能的分配。需要定期对变电站站内设备进行巡检,以及早排除安全隐患,保证电力网络的安全稳定运行。

传统的变电站巡检存在以下问题:一是地处高温、高盐、高湿、强台风地区的变电站,设备腐蚀及发热情况十分严重,值班员需要开展大量巡视及测温工作,工作量大,人力成本高;二是需要人工全天候监视,极易因巡视人员疲惫而导致无法有效识别出变电站的危险情况;三是人工开展巡视工作时,数小时内暴露在阳光直射,40摄氏度以上的高温环境下,容易引发相关疾病,此外,人工巡检结果的可靠性与巡检人员的技术水平相关。若巡检人员专业能力不足,会给巡检结果带来安全隐患。

而伴随着移动机器人及计算机技术的逐渐发展成熟,同时为了解决人工巡检存在的弊端,行业内提出开发专用的变电站巡检机器人来替代人工对变电站进行巡检。虽然目前有许多非常成熟的导航算法,但都建立在道路有一部分畅通的情况,当出现障碍物完全覆盖道路的情况,例如杂草布满道路,传统导航算法将无法完成导航任务。

发明内容

本发明的目的是提供一种基于深度学习的变电站巡检机器人辅助导航方法。

实现本发明目的的技术方案如下:

一种基于深度学习的变电站巡检机器人辅助导航方法,包括:

步骤1:采集变电站环境的可见光图像,对深度学习目标检测模型进行训练,得到适用于变电站的最优深度学习目标检测模型;包括

1.1:获取可见光图像中包含变电站障碍物的图像样本;

1.2:根据图像样本中障碍物类别不同进行分类,获得至少一种图像类别并进行标注;

1.3:对每个图像类别中各图像样本进行旋转、错切、高斯模糊、白化处理,并调整图像样本的尺寸,对样本进行数据增强,得到各图像类别下的图像样本集合;

1.4:将已标注的图像样本集合随机分为训练组和验证组,并保证两组无重叠;

1.5:将图像样本集合中的图像样本依次输入深度学习目标检测模型,利用随机梯度下降法对深度卷积神经网络模型进行训练,得到适用于变电站的最优深度学习目标检测模型;

步骤2:将巡检机器人的超声波雷达实际探测的区域投影到可见光图像中,并对可见光图像进行分割,获得仅包含超声波雷达实际探测区域的图像;包括

2.1:巡检机器人报警停车后,采集巡检机器人的可见光传感器与超声波雷达传感器数据,并记录每组数据采集时刻的时间,保存为时间戳;

2.2:对采集到的带有时间戳的不同传感器的数据通过多传感器异步信息匹配进行校准,得到经过匹配后的不同传感器数据;

2.3:通过坐标投影公式,将超声波雷达在巡检机器人坐标系下探测区域坐标投影到可见光图像像素坐标系下,获得像素坐标;

2.4:将像素坐标区域外全部置黑,在图像中分割出超声波实际探测区域,获得仅包含超声波雷达实际探测区域的图像;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网四川省电力公司电力科学研究院;成都信息工程大学;四川达曼正特科技有限公司,未经国网四川省电力公司电力科学研究院;成都信息工程大学;四川达曼正特科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110107475.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top