[发明专利]弹性光滑曲面约束的细长软体机器人的建模与控制方法有效
| 申请号: | 202110067449.X | 申请日: | 2021-01-19 |
| 公开(公告)号: | CN112818482B | 公开(公告)日: | 2023-07-21 |
| 发明(设计)人: | 刘玉旺;苑婷雯;李杰;刘涛;陈鹏;王冬琦 | 申请(专利权)人: | 中国科学院沈阳自动化研究所 |
| 主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/23;G06F119/14 |
| 代理公司: | 沈阳科苑专利商标代理有限公司 21002 | 代理人: | 王倩 |
| 地址: | 110016 辽*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 弹性 光滑 曲面 约束 细长 软体 机器人 建模 控制 方法 | ||
1.弹性光滑曲面约束的细长软体机器人的建模与控制方法,其特征在于,包括以下步骤:
将细长软体机器人的横截面简化成圆截面、整体结构简化成Kirchhoff弹性细杆,构建细长软体机器人模型并进行非线性静力学分析;
采用有限差分方法对细长软体机器人模型进行空域离散,添加几何空间边界条件约束、定长条件约束和弹性光滑曲面约束;
通过自适应搜索弹性约束条件的优化算法,对细长软体机器人模型进行求解,得到细长软体机器人各离散点的几何空间坐标及力学信息;
根据求解结果得到的机器人末端离散点的力学信息,对机器人进行控制;
所述的细长软体机器人模型为:
根据线弹性本构关系,得到所述的细长软体机器人截面作用力主矩:
其中,hj表示细长软体机器人静力平衡、静力矩平衡及欧拉参数方程,j=1…7;参数q1、q2、q3、q4为细长软体机器人圆截面的欧拉参数,E、G为均匀各向同性的细长软体机器人的杨氏模量和剪切模量;Ix、Iy横截面相对主轴坐标系x轴、y轴的惯性矩,Iz为横截面相对主轴坐标系z轴的极惯性矩:a为圆截面的半径;Fi为细长软体机器人内力在横截面主轴坐标系下的映射;Mi为细长软体机器人内力矩在横截面主轴坐标系下的映射;ωi表示弯扭度;fi为细长软体机器人所受分布合力在横截面主轴坐标系下的映射,包括弹性接触力FT、重力分布力G,其中i=x,y,z;
所述弹性光滑曲面约束为:
接触力接触力在世界坐标系下的映射表示为:k为弹性约束曲面的弹性系数;
其中,弹性光滑曲面的圆心坐标为(X0,Y0,Z0),R0为光滑曲面的半径,机器人离散点坐标为(ξ,η,ζ)。
2.根据权利要求1所述的弹性光滑曲面约束的细长软体机器人的建模与控制方法,其特征在于,所述采用有限差分方法对细长软体机器人模型进行空域离散具体如下:
采用有限差分方法,以均布节点作为离散点,对模型进行空域离散,得到总长为L的细长软体机器人n等分后的n+1个离散点,所述离散点在细长软体机器人几何中心线上。
3.根据权利要求1所述的弹性光滑曲面约束的细长软体机器人的建模与控制方法,其特征在于:几何空间边界条件约束包括细长软体机器人的首末离散点的欧拉参数及末端离散点几何空间坐标。
4.根据权利要求1所述的弹性光滑曲面约束的细长软体机器人的建模与控制方法,其特征在于,所述定长条件约束为:
其中,h8表示细长软体机器人长度恒定不变,ξj,ηj,ζj表示细长软体机器人离散点j在世界坐标系下的坐标,通过Simpson插值求积公式对细长软体机器人切线矢量积分得到。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院沈阳自动化研究所,未经中国科学院沈阳自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110067449.X/1.html,转载请声明来源钻瓜专利网。





