[发明专利]一种Bi12 有效
申请号: | 202011595518.6 | 申请日: | 2020-12-29 |
公开(公告)号: | CN112551575B | 公开(公告)日: | 2022-05-27 |
发明(设计)人: | 鲍亮;张怀伟;白王峰;吴诗婷;元勇军;陈逸凡 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | C01G29/00 | 分类号: | C01G29/00;B82Y30/00;B82Y40/00 |
代理公司: | 浙江千克知识产权代理有限公司 33246 | 代理人: | 周希良 |
地址: | 310018 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 bi base sub 12 | ||
本发明公开了一种Bi12O17Cl2纳米粉体的制备方法,其包括以下步骤:将硝酸铋溶于乙二醇形成硝酸铋溶液,将氯化铵溶解于去离子水形成氯化铵溶液,将硝酸铋溶液溶于氯化铵溶液并置入高压反应釜中,将配置有反应物料的反应釜密闭,在100‑160℃进行热处理,后冷却至室温,移除上清液,调节pH值,搅拌使得固体产物析出,烘干,得到Bi12O17Cl2纳米粉体。本发明制备方法操作简单,采用了常用的原料试剂,成本低廉。通过这种简单水热法制备的Bi12O17Cl2纳米粉体厚度不大于20nm,因此可以有效地增大材料的比表面积。
技术领域
本发明属于无机非金属材料领域,具体涉及一种Bi12O17Cl2纳米粉体的制备方法。
背景技术
光催化技术作为一种能在环境和能源领域发挥重要作用的绿色技术,成为了当前社会与科学发展的热点。Bi12O17Cl2作为一种在可见光下有优异光催化性能的半导体材料,成为了目前光催化领域研究的热点。Bi12O17Cl2的结构为典型的层状结构,有较小的禁带宽度以及较好的可见光响应,且卤素资源丰富,对环境友好稳定性好等优点,因此具有广阔的应用前景。
现有技术合成Bi12O17Cl2的主要方法包括微波、沉积和水热法等。其中,水热溶剂热法因容易控制晶体生长反应动力学,产物结晶度高等优点而广泛用于制备各种纳米材料,而不同颗粒形貌的呈现不同的电化学性能。而目前国内外所合成的Bi12O17Cl2一般工艺复杂,产率较低且伴有杂相,抑制了其光催化活性。经研究发现,减少Bi12O17Cl2的颗粒尺寸可以增大材料的比表面积,同时有利于后续的负载处理。基于本发明提出了一种Bi12O17Cl2纳米粉体的制备方法。
发明内容
本发明提供了一种工艺简单、易于控制的Bi12O17Cl2纳米粉体的制备方法。
本发明采取如下技术方案:
一种Bi12O17Cl2纳米粉体的制备方法,其包括以下步骤:将硝酸铋溶于乙二醇形成硝酸铋溶液,将氯化铵溶解于去离子水形成氯化铵溶液,将硝酸铋溶液溶于氯化铵溶液并置入高压反应釜中,将配置有反应物料的反应釜密闭,在100-160℃进行热处理,后冷却至室温,移除上清液,调节pH值,搅拌使得固体产物析出,烘干,得到Bi12O17Cl2纳米粉体。
优选的,硝酸铋溶液浓度为:0.05~0.25mol/L。
优选的,氯化铵溶液浓度为:0.01~0.05mol/L。
优选的,氯化铵和硝酸铋的摩尔比为2:1~4:1。
本发明制备的Bi12O17Cl2纳米粉体呈片状组装,Bi12O17Cl2纳米片厚度不大于20纳米并互相连结。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011595518.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:新风装置及具有其的空调器
- 下一篇:一种集成吊顶可调龙骨结构
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法