[发明专利]基于多层级知识蒸馏预训练语言模型自动压缩方法及平台有效
申请号: | 202011498328.2 | 申请日: | 2020-12-17 |
公开(公告)号: | CN112241455B | 公开(公告)日: | 2021-05-04 |
发明(设计)人: | 王宏升;王恩平;俞再亮 | 申请(专利权)人: | 之江实验室 |
主分类号: | G06F16/35 | 分类号: | G06F16/35;G06N3/04;G06N3/08 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 孙孟辉 |
地址: | 311121 浙江省杭州市余*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 多层 知识 蒸馏 训练 语言 模型 自动 压缩 方法 平台 | ||
本发明公开了一种基于多层级知识蒸馏的预训练语言模型自动压缩方法及平台,所述方法包括如下步骤:步骤一、构建多层级知识蒸馏,在自注意力单元、隐藏层状态、嵌入层三个不同层级上蒸馏大模型的知识结构;步骤二、训练元学习的知识蒸馏网络,生成多种预训练语言模型的通用压缩架构;步骤三、基于进化算法搜索最佳压缩结构。首先,研究基于元学习的知识蒸馏生成多种预训练语言模型的通用压缩架构;其次,在已训练好的元学习网络基础上,通过进化算法搜索最佳压缩结构,由此得到与任务无关的预训练语言模型的最优通用压缩架构。
技术领域
本发明属于语言模型压缩领域,尤其涉及一种基于多层级知识蒸馏的预训练语言模型自动压缩方法及平台。
背景技术
大规模预训练语言模型在自然语言理解和生成任务上都取得了优异的性能,然而,将具有海量参数的预训练语言模型部署到内存有限的设备中仍然面临巨大挑战。在模型压缩领域,已有的语言模型压缩方法都是针对特定任务的语言模型压缩。面向下游其它任务时,使用特定任务知识蒸馏生成的预训练模型仍需要重新微调大模型以及生成相关的大模型知识。大模型微调费时费力,计算成本也很高。为了提高压缩模型面向多种下游任务使用过程中的灵活性和有效性,研究与任务无关的预训练语言模型的通用压缩架构。而且,已有的知识蒸馏方法主要是人工设计的知识蒸馏策略。由于受计算资源等限制,人工设计所有可能的蒸馏结构并且寻找最优结构几乎不可能。受神经网络架构搜索的启发,尤其是在少样本的情况下,本发明基于多层级知识蒸馏生成面向多任务的预训练语言模型的通用压缩架构。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于多层级知识蒸馏的预训练语言模型自动压缩方法及平台。本发明首先构建一种多层级的知识蒸馏,在不同层级上蒸馏大模型的知识结构。而且,引入元学习,生成多种预训练语言模型的通用压缩架构。具体地,设计一种结构生成器的元网络,基于多层级知识蒸馏方法构建知识蒸馏编码向量,利用该结构生成器生成与当前输入的编码向量对应的蒸馏结构模型。同时,提出伯努利分布采样的方法训练结构生成器。每轮迭代时,利用伯努利分布采样各个编码器迁移的自注意力单元,组成对应的编码向量。通过改变输入结构生成器的编码向量和小批次的训练数据,联合训练结构生成器和对应的蒸馏结构,可以学得能够为不同蒸馏结构生成权重的结构生成器。同时,在已训练好的元学习网络基础上,通过进化算法搜索最佳压缩结构,由此得到与任务无关的预训练语言模型的最优通用压缩架构。
本发明的目的是通过以下技术方案实现的:
一种基于多层级知识蒸馏的预训练语言模型自动压缩方法,包括如下步骤:
步骤一、构建多层级知识蒸馏,在自注意力单元、隐藏层状态、嵌入层三个不同层级上蒸馏大模型的知识结构;
步骤二、训练元学习的知识蒸馏网络,生成多种预训练语言模型的通用压缩架构;
步骤三、基于进化算法搜索最优压缩结构。
进一步的,步骤二中设计一种结构生成器的元网络,基于步骤一的多层级知识蒸馏构建知识蒸馏编码向量,利用结构生成器生成与当前输入的编码向量对应的蒸馏结构模型;同时,采用伯努利分布采样的方法训练结构生成器,每轮迭代时,利用伯努利分布采样各个编码器迁移的自注意力单元,组成对应的编码向量;通过改变输入结构生成器的编码向量和小批次的训练数据,联合训练结构生成器和对应的蒸馏结构,得到为不同蒸馏结构生成权重的结构生成器。
进一步的,步骤三中在已训练好的元学习网络基础上,通过进化算法搜索最优压缩架构,得到与任务无关的预训练语言模型的最优通用压缩架构。
进一步的,步骤一中将自注意力分布知识、隐藏状态知识和嵌入层知识编码为一个蒸馏网络,采用知识蒸馏实现大模型向小模型的压缩。
进一步的,步骤一中包括自注意力知识蒸馏、隐藏层状态知识蒸馏和嵌入层知识蒸馏。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于之江实验室,未经之江实验室许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011498328.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种车载AR-HUD的手势交互方法和系统
- 下一篇:通信天线阵列及电子设备