[发明专利]一种基于深度卷积神经网络的图像识别方法、设备在审

专利信息
申请号: 202011492450.9 申请日: 2020-12-17
公开(公告)号: CN112699868A 公开(公告)日: 2021-04-23
发明(设计)人: 陈浩;肖永杰;林黄靖;王春永 申请(专利权)人: 深圳视见医疗科技有限公司
主分类号: G06K9/20 分类号: G06K9/20;G06K9/34;G06K9/62;G06N3/04
代理公司: 深圳市徽正知识产权代理有限公司 44405 代理人: 卢杏艳
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 卷积 神经网络 图像 识别 方法 设备
【说明书】:

发明涉及医疗技术领域,尤其是涉及一种基于深度卷积神经网络的图像识别方法、设备,该方法包括:对胸部的X光片进行预处理,得到符合格式要求的X光片初始图像;对X光片初始图像进行筛查,检测是否为胸部正位图像;将胸部正位图像输入至深度卷积神经网络的二分类模型中进行阴阳性分类;将阳性结果的图像输入至深度卷积神经网络的检测模型中检测疾病类型并对图像中的病灶区域进行轮廓标注;显示图像对应的疾病类型和病灶区域。本发明实施例提供的基于深度卷积神经网络的图像识别方法既能筛查X光胸片的阴阳性,也能定位出病灶区域,同时能标出病灶区域的疾病种类或者征象,给医生提供更具有可解释性的参考意见。

技术领域

本发明涉及医疗技术领域,尤其是涉及一种基于深度卷积神经网络的图像识别方法、设备。

背景技术

胸部X光片是常见的检查或诊断胸部疾病的工具。在三甲医院中,日均产生的X光片数量非常大,一方面,阅片医生在长时间的阅片过程中会逐渐累积疲劳度,进而可能会出现诊断错误的情况;另一方面,在城镇小医院中,日均拍片量虽然不多,但阅片医生的经验不足,也可能出现诊断错误的情况。这就亟需一种可以帮医生减少误诊或提供诊断信息的辅助诊断工具。

随着深度学习的发展,越来越多的深度卷积神经网络算法技术被应用到了医学图像中,AI智能辅助诊断系统应运而生。

现有的大多数AI智能辅助诊断方法,大多数是利用国际公开的数据集(如ChestXray14),或者从医院收集的带报告数据,经过自然语言处理从报告中获取片级的疾病标签,然后训练一个多标签分类网络模型或多个单疾病分类模型,然后对胸部X光片进行预测,采用类激活映射(或加权梯度类激活映射)的方法,将深度卷积神经网络模型学到的疾病特征信息转化成热力图的形式,在热力图上可以看到疾病大致的病灶区域在哪里,以此来更进一步地辅助医生诊断。

首先,国际公开数据集的片子质量参差不齐,存在过度曝光、位置不正、成像不好等质量差的片子;此外,国际公开数据集或医院收集的数据,这些数据集的标签绝大部分是从诊断报告中提取的,提取的方法不能保证标签百分百正确;用这种数据训练出来的深度卷积神经网络会严重偏离实际医生诊断的结果。

其次,上述方式的预测结果或者是一个2分结果,或者只能标出可疑病灶区域,却没有该可疑病灶区域对应的疾病种类或者征象,或者只能提示可疑病种,却无法给出相应的病灶区域,即现有技术基本上都是基于整片的疾病分类,并没有具体定位到疾病所在的位置,即使采用类激活映射技术实现弱监督语义分割能力,但得到的病灶区域信息往往不够准确,假阳很高。

临床医生由于需要准确地将疾病的具体位置写在诊断报告中,所以现有的技术方法与临床诊断的情况不相符,很难在协助医生诊断方面上提供有效的帮助。

发明内容

针对上述技术问题,本发明实施例提供了一种基于深度卷积神经网络的图像识别方法、设备,以解决传统算法给出的AI智能辅助诊断方法无法给出病灶区域对应的疾病种类,可解释性不强的技术问题。

本发明实施例在第一方面提供一种基于深度卷积神经网络的图像识别方法,其特征在于,包括:对胸部的X光片进行预处理,得到符合格式要求的X光片初始图像;对所述X光片初始图像进行筛查,检测所述X光片初始图像是否为胸部正位图像;将所述胸部正位图像输入至深度卷积神经网络的二分类模型中进行阴阳性分类;将阳性结果的所述胸部正位图像输入至深度卷积神经网络的检测模型中检测所述胸部正位图像的疾病类型并对所述胸部正位图像中的病灶区域进行轮廓标注;显示所述胸部正位图像对应的所述疾病类型和所述病灶区域。

可选地,所述对胸部X光片进行预处理,得到符合格式要求的X光片初始图像包括:将所述胸部X光片所有的像素值映射到正态分布上,得到窗宽和窗位;将所述窗宽区间外的噪音像素点去除,并将去除后的所述像素映射到0-255的区间范围,得到X光片初始图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳视见医疗科技有限公司,未经深圳视见医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011492450.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top