[发明专利]关键词检测方法、装置、设备和存储介质有效

专利信息
申请号: 202011462771.4 申请日: 2020-12-11
公开(公告)号: CN112634870B 公开(公告)日: 2023-05-30
发明(设计)人: 刘博卿;王健宗;张之勇 申请(专利权)人: 平安科技(深圳)有限公司
主分类号: G10L15/02 分类号: G10L15/02;G10L15/18;G10L25/24
代理公司: 深圳市明日今典知识产权代理事务所(普通合伙) 44343 代理人: 王杰辉;曹勇
地址: 518000 广东省深圳市福田区福*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 关键词 检测 方法 装置 设备 存储 介质
【权利要求书】:

1.一种关键词检测方法,其特征在于,关键词检测网络包括并行连接的第一全连接层和第二全连接层,方法包括:

获取当前用户输入的待检测语音语句;

提取所述待检测语音语句对应的语音特征参数;

将所述语音特征参数输入所述关键词检测网络;

判断所述第一全连接层输出的第一概率是否高于预设概率阈值,其中,所述第一概率为所述当前用户身份识别对应的概率;

若是,根据所述第二全连接层输出的第二概率,确定所述待检测语音语句的关键词,其中,所述第二概率为关键词识别对应的概率。

2.根据权利要求1所述的关键词检测方法,其特征在于,所述判断所述第一全连接层输出的第一概率是否高于预设概率阈值的步骤,包括:

根据指定计算方式计算所述当前用户为目标用户的概率,其中,所述指定计算方式为P(Su|X)=1-P(Se|X),P(Su|X)表示所述当前用户为所述目标用户的概率,P(Se|X)表示所述当前用户不是所述目标用户的概率;

将所述当前用户为所述目标用户的概率P(Su|X),作为所述第一概率;

判断所述P(Su|X)是否高于预设概率阈值;

若是,则判定所述第一全连接层输出的第一概率高于所述预设概率阈值。

3.根据权利要求1所述的关键词检测方法,其特征在于,所述关键词检测网络中所述第一全连接层对应第一任务的输出通道,所述第二全连接层对应第二任务的输出通道,所述获取当前用户输入的待检测语音语句的步骤之前,包括:

将各训练数据分别对应的语音特征参数,输入至所述关键词检测网络中进行训练;

实时获取所述第一任务对应的第一损失函数的函数值,以及所述第二任务对应的第二损失函数的函数值;

根据所述第一损失函数的函数值和所述第二损失函数的函数值的数值关系,实时调整所述第一损失函数和所述第二损失函数在总损失函数中分别对应的损失权重;

判断所述总损失函数是否达到预设条件;

若是,则判定完成对所述关键词检测网络的训练,并固定所述关键词检测网络的参数。

4.根据权利要求3所述的关键词检测方法,其特征在于,所述实时获取所述第一任务对应的第一损失函数的函数值,以及所述第二任务对应的第二损失函数的函数值的步骤,包括:

获取所述第一任务对应的sigmoid函数的当前预测值,以及预设的第一真实值,获取所述第二任务对应的softmax函数的当前预测值,以及预设的第二真实值;

根据所述sigmoid函数的当前预测值,以及预设的第一真实值,计算所述第一损失函数值,根据所述softmax函数的当前预测值,以及预设的第二真实值,计算所述第二损失函数值。

5.根据权利要求3所述的关键词检测方法,其特征在于,所述根据所述第一损失函数的函数值和所述第二损失函数的函数值的数值关系,实时调整所述第一损失函数和所述第二损失函数在总损失函数中分别对应的损失权重的步骤,包括:

计算所述第一损失函数的函数值和所述第二损失函数的函数值的差值;

判断所述差值是否大于零;

若是,则增大所述第一损失函数在总损失函数中对应的第一损失权重,减小所述第二损失函数在总损失函数中对应的第二损失权重。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011462771.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top