[发明专利]一种Al2 有效
| 申请号: | 202011257287.8 | 申请日: | 2020-11-11 |
| 公开(公告)号: | CN112626377B | 公开(公告)日: | 2021-11-05 |
| 发明(设计)人: | 李菊英;梅青松;张国栋;王北海;简臣杰 | 申请(专利权)人: | 武汉轻工大学 |
| 主分类号: | C22C21/00 | 分类号: | C22C21/00;C22C32/00;C22C1/05;B22F1/02;B22F3/18;B22F7/00 |
| 代理公司: | 北京思创大成知识产权代理有限公司 11614 | 代理人: | 高爽 |
| 地址: | 430023 湖北省*** | 国省代码: | 湖北;42 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 al base sub | ||
本发明属于氧化铝颗粒增强铝基复合材料制备领域,公开了一种Al2O3增强铝基复合材料及其制备方法。该按重量百分比计,该复合材料的原料包括5‑25%的Al2O3和75‑95%的基体材料,该方法包括以下步骤:对铝粉进行氧化处理得到Al2O3;分别对基体材料和不锈钢板进行预处理;将预处理后的不锈钢板的光洁面对折并压制成不锈钢封套;将Al2O3置于预处理后的基体材料上,将基体材料对折,使基体材料包裹住Al2O3,然后将基体材料四周封口并放入不锈钢封套中;对装有基体材料的不锈钢封套进行轧制,每轧制一道次后沿不锈钢封套的长度方向进行对折,再轧制下一道次,直到设定道次。本发明的Al2O3增强铝基复合材料中Al2O3能均匀弥散地分布在铝基体,有效地增强铝基体。
技术领域
本发明属于氧化铝颗粒增强铝基复合材料制备领域,具体地,涉及一种Al2O3增强铝基复合材料及其制备方法。
背景技术
氧化铝颗粒增强铝基复合材料(Al-MMCs)具有质量轻、比强度与比刚度高、耐高温性能好、抗磨性卓越,以及可用常规工艺和设备进行成型与处理等很多优良性能,除可用于航空航天工业和军事工业外,还可用于制造汽车的汽缸体、活塞、刹车摩擦件上。
现有技术中广泛使用氧化物直接加入Al熔体中,经过搅拌使其混合均匀。强化相氧化物可选用氧化铝或能与铝熔体反应的SiO2,CuO,TiO2或盐类NH4Al(SO4)2。但由于是液相反应或强化相分散,因此存在着反应温度高,强化相粗大和分散不均等问题。
目前,已有关于Al2O3颗粒增强铝基复合材料的现有技术。例如 200710124776.4是把纳米氧化铝颗粒直接加入铝金属熔液,采用超声搅拌的方法使纳米氧化铝颗粒分散在铝熔液中,然后注入模具,得到轻金属基纳米复合材料。此技术工艺具有简单,可控等优点,但是纳米颗粒是通过外加的方式进入基体,存在界面有污染,结合强度低等缺点。201010505574.6 是采用硼砂类硼化物和K2ZrF6类氟化物粉剂为反应混合盐,采用熔体直接反应法在铝熔体内直接合成制备纳米氧化铝颗粒增强铝基复合材料。由于该反应的反应物和生成物都很复杂,反应过程中伴随着熔渣的产生,还有 KF气体的释放,虽说此技术工艺能得到单一的纳米氧化铝增强铝基复合材料,但是该工艺存在反应过程复杂,生产过程环境负荷大,有熔渣产生和气体释放等缺点。杨绍斌,张旭,谢帅.高质量分数Al2O3/Al复合材料的硬度和耐磨性能[J].材料保护,2018,51(04):47-50提出一种Al2O3增强铝基复合材料的制备方法,按重量百分比计,该复合材料的原料包括粒径为10μm,纯度>99%的Al2O3粉和粒径为75μm,纯度>99%的Al粉。制备方法包括以下步骤:将60%-95%Al粉和5%-40%Al2O3粉加入到球磨罐中,以100r/min 球磨速度球磨2h,使粉末混合均匀。将球磨粉加入到20mm压片模具中,在WE-30万能试验机上冷压成型(20mm×5mm),压力为150kN,保压 5min。放入管式炉内,氮气保护,升温到600℃,保温4h,取出冷却至室温,得到Al2O3增强铝基复合材料,虽然此篇文献的Al2O3粉用量增多,但是得到Al2O3增强铝基复合材料的硬度不高。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉轻工大学,未经武汉轻工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011257287.8/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





