[发明专利]淋巴结分区方法、装置、设备及计算机可读存储介质有效

专利信息
申请号: 202011244080.7 申请日: 2020-11-10
公开(公告)号: CN112258499B 公开(公告)日: 2023-09-26
发明(设计)人: 王成;高启予;俞益洲;李一鸣;乔昕 申请(专利权)人: 北京深睿博联科技有限责任公司;杭州深睿博联科技有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/12;G06T7/33
代理公司: 北京天方智力知识产权代理有限公司 11719 代理人: 吴凡
地址: 102209 北京市昌平区北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 淋巴结 分区 方法 装置 设备 计算机 可读 存储 介质
【说明书】:

本申请提供了一种淋巴结分区方法,包括:确定各个样本器官的轮廓信息以及各个目标器官的轮廓信息,其中,各个样本器官为样本纵膈的两侧胸腔内的各个器官,各个目标器官为目标纵膈的两侧胸腔内的各个器官;生成各个样本器官的轮廓信息到各个目标器官的轮廓信息的变换矩阵;根据变换矩阵,对目标纵膈进行分区,得到目标纵膈分区结果;基于目标纵膈分区结果,对各个目标淋巴结进行分区。可见,本申请可以自动对各个目标淋巴结进行分区,避免了人工分区的弊端,提高了淋巴结分区结果的准确性。

技术领域

本申请涉及计算机技术领域,特别涉及一种淋巴结分区方法、装置、设备及计算机可读存储介质。

背景技术

癌症,又称恶性肿瘤,严重威胁着人类健康,其中,肺癌是对人群健康和生命威胁最大的恶性肿瘤之一。根据2018年癌症发病及死亡数据统计表明,中国男性肺癌发病率及死亡率均居榜首,女性发病率占第二位,死亡率占第一位。同时,在世界范围内,肺癌的发病率与死亡率也居于榜首。据统计,90%与癌症相关的死亡病历与恶性肿瘤转移相关,是目前肿瘤研究工作的困境之一。

淋巴结是人体重要的免疫器官,研究肺部淋巴结对于肺部癌症转移研究具有重要意义,淋巴结状况对于肺癌的临床病理分期、治疗方案的选择与评估、患者的预后及治疗,均具有决定性作用。为此,国际肺癌研究协会2009年制定了第七版标准,将胸部淋巴结划分为14个区,以起到指导淋巴结分区、规范检查、便于分析其转移路径等目的,但是该标准并未提出任何自动分区算法,只是从医学的角度对淋巴结进行了分区。

现有的淋巴结分区主要依靠医生手动标注,不仅花费时间较长,还耗费了过多精力;此外,从图像标注的角度来讲,由于淋巴结数目较多、个体间差异较大,并且,存在不同医生对分区理解差异大、不同分区之间具有模糊地带等问题,导致不同医生的标注结果可能千差万别,很难保证标注质量,从而无法保证淋巴结分区结果的准确性。

发明内容

本申请提供了一种淋巴结分区方法、装置、设备及计算机可读存储介质,能够提高淋巴结分区结果的准确性。

第一方面,本申请提供了一种淋巴结分区方法,包括:

确定各个样本器官的轮廓信息以及各个目标器官的轮廓信息,所述各个样本器官为样本纵膈的两侧胸腔内的各个器官,所述各个目标器官为目标纵膈的两侧胸腔内的各个器官;

生成所述各个样本器官的轮廓信息到所述各个目标器官的轮廓信息的变换矩阵;

根据所述变换矩阵,对所述目标纵膈进行分区,得到目标纵膈分区结果;

基于所述目标纵膈分区结果,对各个目标淋巴结进行分区,所述目标纵膈与各个目标淋巴结属于同一个体。

可选的,所述生成各个样本器官的轮廓信息到各个目标器官的轮廓信息的变换矩阵,包括:

采用迭代最近邻算法,生成各个样本器官的轮廓信息到各个目标器官的轮廓信息的变换矩阵。

可选的,所述生成各个样本器官的轮廓信息到各个目标器官的轮廓信息的变换矩阵,包括:

生成样本器官点云空间与目标器官点云空间之间的变换矩阵,所述样本器官点云空间为各个样本器官的轮廓信息对应的点云空间,所述目标器官点云空间是各个目标器官的轮廓信息对应的点云空间。

可选的,所述根据所述变换矩阵,对所述目标纵膈进行分区,包括:

根据所述变换矩阵与样本纵膈点云空间,对所述目标纵膈进行分区;

其中,所述样本纵膈点云空间是预先生成的样本纵膈分区结果对应的点云空间,所述样本纵膈分区结果是由至少一位医生对样本纵膈进行标注而成的。

可选的,所述生成各个样本器官的轮廓信息到各个目标器官的轮廓信息的变换矩阵,包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京深睿博联科技有限责任公司;杭州深睿博联科技有限公司,未经北京深睿博联科技有限责任公司;杭州深睿博联科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011244080.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top