[发明专利]一种图像文档的文本抽取方法、装置及电子设备有效

专利信息
申请号: 202011221190.1 申请日: 2020-11-05
公开(公告)号: CN112036406B 公开(公告)日: 2021-03-02
发明(设计)人: 黄园园;钱泓锦;刘占亮;窦志成 申请(专利权)人: 北京智源人工智能研究院
主分类号: G06K9/32 分类号: G06K9/32;G06K9/62;G06N3/04;G06N3/08
代理公司: 北京动力号知识产权代理有限公司 11775 代理人: 梁艳;白婉露
地址: 100083 北京市海淀区*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 文档 文本 抽取 方法 装置 电子设备
【说明书】:

发明公开了一种图像文档的文本抽取方法、装置及电子设备方法包括:通过光学字符识别模型对图像文档进行识别;根据所识别的信息生成组合向量;将所述组合向量输入文本抽取模型进行文本抽取,获得结构化信息;其中,根据联合损失函数对所述光学字符识别模型以及文本抽取模型进行训练优化,所述联合损失函数包括对图像文档进行识别的损失和文本抽取的损失。该方法能够有效解决现有的文档抽取方法造成的结构信息混乱的问题。

技术领域

本发明涉及图像处理技术领域,尤其涉及一种图像文档的文本抽取方法、装置及电子设备。

背景技术

文档抽取可以分为信息抽取和文档结构理解两个部分。以语言模型为基础的信息抽取技术已经发展到了较高水平,比较常用的框架有word2vec+BiLSTM+CRF、BERT、GPT、ERNIE等预训练模型。大规模预训练语言模型能够通过自监督任务在预训练阶段有效捕捉文本中蕴含的语义信息,经过下游任务微调后能有效地提升模型效果。然而,现有的预训练语言模型主要针对文本单一模态进行,而忽视了文档本身与文本天然对齐的视觉结构信息,而且均是利用识别好的OCR结果进行信息抽取的,不支持类似表格结构的信息抽取,造成结构信息的抽取混乱。

发明内容

本发明提供了一种图像文档的文本抽取方法、装置及电子设备,能够有效解决现有的文档抽取方法造成的结构信息混乱的问题。

根据本发明的第一方面,提供了一种图像文档的文本抽取方法,包括:

通过光学字符识别模型对图像文档进行识别;

根据所识别的信息生成组合向量;

将所述组合向量输入文本抽取模型进行文本抽取,获得结构化信息;

其中,根据联合损失函数对所述光学字符识别模型以及文本抽取模型进行训练优化,所述联合损失函数包括对图像文档进行识别的损失和文本抽取的损失。

进一步地,所述通过光学字符识别模型对图像文档进行识别,包括:

对图像文档进行倾斜校正、文字检测、文字识别和表格识别,得到文字信息、图像信息、坐标信息和表格信息。

进一步地,根据所识别的信息生成组合向量包括:

根据文字信息得到词嵌入和位置嵌入,根据图像信息到字符图像嵌入,根据坐标信息得到坐标嵌入,根据表格信息得到表格信息嵌入,组合得到所述组合向量。

进一步地,按照下述方式计算所述联合损失函数:

其中,为对图像文档进行识别的损失,为文本抽取的损失,为预设的系数。

进一步地,所述对图像文档进行识别的损失包括文字识别的损失和表格识别的坐标损失。

根据本发明的第二方面,提供了一种图像文档的文本抽取装置,包括:

识别模块,用于通过光学字符识别模型对图像文档进行识别;

向量生成模块,用于根据所识别的信息生成组合向量;

抽取模块,用于将所述组合向量输入文本抽取模型进行文本抽取,获得结构化信息;

训练模块,用于根据联合损失函数对所述光学字符识别模型以及文本抽取模型进行训练优化,所述联合损失函数包括对图像文档进行识别的损失和文本抽取的损失。

进一步地,所述识别模块包括倾斜校正模块、文字检测模块、文字识别模块和表格识别模块,得到文字信息、图像信息、坐标信息和表格信息;

所述向量生成模块根据文字信息得到词嵌入和位置嵌入,根据图像信息到字符图像嵌入,根据坐标信息得到坐标嵌入,根据表格信息得到表格信息嵌入,组合得到所述组合向量。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京智源人工智能研究院,未经北京智源人工智能研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011221190.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top