[发明专利]应用于智慧政企云服务的大数据分析方法及大数据云平台有效
| 申请号: | 202011113297.4 | 申请日: | 2020-10-17 |
| 公开(公告)号: | CN112232771B | 公开(公告)日: | 2021-06-01 |
| 发明(设计)人: | 严怀华 | 申请(专利权)人: | 力合科创集团有限公司 |
| 主分类号: | G06Q10/10 | 分类号: | G06Q10/10;G06Q10/06;G06F16/2457;G06F16/25;G06F16/28;G06K9/62 |
| 代理公司: | 广州市红荔专利代理有限公司 44214 | 代理人: | 吴伟文 |
| 地址: | 518000 广东省深圳市南山区*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 应用于 智慧 政企 服务 数据 分析 方法 平台 | ||
1.一种应用于智慧政企云服务的大数据分析方法,其特征在于,所述方法包括:
获取包括企业服务需求数据的业务请求数据;提取所述业务请求数据对应的企业认证数据;校验所述企业认证数据,获得所述业务请求数据中各分类认证指标对应的分类认证数据;
根据所述分类认证数据确定各所述分类认证指标之间的业务需求关联数据;根据所述业务需求关联数据确定所述业务请求数据中的企业服务需求数据属于有效需求数据的第一服务评价系数;根据所述第一服务评价系数,确定所述业务请求数据中所述企业服务需求数据的业务执行逻辑数据;
根据所述业务执行逻辑数据,响应所述响应所述企业服务需求数据执行对应的业务处理,并将业务处理结果进行反馈。
2.根据权利要求1所述的方法,其特征在于,所述提取所述业务请求数据对应的企业认证数据,包括:
将所述业务请求数据输入至预先配置的数据识别线程对应的认证数据提取单元中;
通过所述认证数据提取单元中的第一执行函数,对所述业务请求数据进行数据类别筛分,获得所述业务请求数据对应的多组具有不同类别标签的待处理数据;其中,所述第一执行函数为钩子hook函数;
通过所述认证数据提取单元中的第二执行函数,对所述多组具有不同类别标签的待处理数据进行数据筛分,获得所述业务请求数据对应的企业认证数据;其中,所述第二执行函数为预先编写的用于进行类别标签分组的执行函数。
3.根据权利要求1所述的方法,其特征在于,所述根据所述分类认证数据确定各所述分类认证指标之间的业务需求关联数据,包括:
将各所述分类认证指标对应的分类认证数据转换为分类认证数据队列;
根据各所述分类认证数据队列之间的数据关联分布矩阵确定分类认证指标之间的业务需求关联数据。
4.根据权利要求2所述的方法,其特征在于,所述根据各所述分类认证数据队列之间的数据关联分布矩阵确定分类认证指标之间的业务需求关联数据,包括:
根据各所述分类认证数据队列之间的队列匹配特征生成用于表征各所述分类认证数据队列的队列描述特征的特征描述列表;获取所述特征描述列表的n个企业信息映射元素,一个企业信息映射元素包括一种企业信息下的企业对内运营属性和企业对外评价属性,n为正整数;
基于所述特征描述列表的列表元素分布轨迹在所述企业信息映射元素中的当前节点属性值和历史节点属性值,以及每个企业信息映射元素对应的企业对内运营属性和企业对外评价属性,获取所述列表元素分布轨迹的轨迹变量序列;将所述列表元素分布轨迹的轨迹变量序列与预设变量比对库中的参考变量序列进行动态拼接,生成动态变量序列;从所述动态变量序列的高更新热度序列区段,采样获取高更新热度的序列元素,获取所述高更新热度的序列元素在所述企业信息映射元素中映射的第一目标节点属性值和第二目标节点属性值;基于所述高更新热度的序列元素在所述企业信息映射元素中映射的第一目标节点属性值和第二目标节点属性值,对所述动态变量序列进行变量相关性检测,得到所述特征描述列表的相关性检测结果;
构建所述相关性检测结果对应的数据特征关联路径,所述数据特征关联路径包含从所述相关性检测结果中提取的相关性特征变量;对各所述分类认证数据中的分类日志记录进行日志文本识别,得到所述分类日志记录的日志文本特征变量;获取所述日志文本特征变量对应的变量更新状态信息;根据所述日志文本特征变量和所述变量更新状态信息生成第一变量关联线程;根据所述日志文本特征变量和所述企业对外评价属性生成第二变量关联线程,获取各所述分类认证数据队列对应的队列结构参数;将所述队列结构参数对应的当前参数集转化为目标参数集,所述目标参数集与所述当前参数集具有不同参数结构;对所述队列结构参数的结构特征向量进行特征提取向量降维,得到所述结构特征向量的降维特征向量;将所述降维特征向量输入向量识别模型,得到特征分布矩阵和特征传递矩阵,所述向量识别模型包括所述第一变量关联线程和所述第二变量关联线程;根据所述目标参数集、所述特征分布矩阵和所述特征传递矩阵生成所述数据关联分布矩阵;
获取所述数据关联分布矩阵的矩阵元素列表集;将所述矩阵元素列表集拆分成矩阵元素子列表;并行地将各矩阵元素子列表加载至处于激活状态的各需求识别模型;所述矩阵元素子列表用于指示相应需求识别模型生成与所述矩阵元素子列表相应的第一需求项目信息,所述矩阵元素子列表还用于指示相应需求识别模型将所述矩阵元素子列表分别转换成企业运营需求项目列表和企业研发需求项目列表,分别从所述企业运营需求项目列表的各运营需求项目事件中提取第一事件属性清单,以及从企业研发需求项目列表的各研发需求项目事件中提取第二事件属性清单,根据所述第一事件属性清单确定直接业务需求事件和根据第二事件属性清单确定间接业务需求事件;
分析各所述直接业务需求事件和所述间接业务需求事件,得到与所述矩阵元素子列表相应的第一需求项目信息;去除各所述需求识别模型所反馈的第一需求项目信息中独立的需求项目信息,并根据去除独立需求项目信息后剩余的需求项目信息,组合生成与所述矩阵元素列表集对应的第二需求项目信息,基于所述第二需求项目信息确定所述业务需求关联数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于力合科创集团有限公司,未经力合科创集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011113297.4/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理





