[发明专利]一种基于集成深度卷积神经网络的胰腺CT图像分割方法有效
| 申请号: | 202011052799.0 | 申请日: | 2020-09-29 |
| 公开(公告)号: | CN112116605B | 公开(公告)日: | 2022-04-22 |
| 发明(设计)人: | 夏勇;陈亚鑫 | 申请(专利权)人: | 西北工业大学深圳研究院;西北工业大学 |
| 主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/00;G06N3/08;G06N3/04 |
| 代理公司: | 西北工业大学专利中心 61204 | 代理人: | 金凤 |
| 地址: | 518000 广东省深圳市南山区粤海街道高*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 集成 深度 卷积 神经网络 胰腺 ct 图像 分割 方法 | ||
本发明公开了一种基于集成深度卷积神经网络的胰腺CT图像分割方法,采用由粗到细的两阶段分割框架对CT图像中的胰腺进行精确的分割。首先构建了一种引入注意力模块和跨层级密集连接的三维U型编码‑解码结构的CNN网络,即Unet模型作为识别网络应用在胰腺图像分割两阶段;在粗分割阶段,对原图进行降采样归一化预处理,然后随机取若干数据块作为网络的输入进行训练,得到胰腺的粗分割结果;在细分割阶段,用边界框包含胰腺区域,在边界框区域内取图像块进行训练;在识别时,使用粗分割结果确定胰腺所在区域,再用细分割进行预测,得到细分割结果。最终将两阶段的结果进行投票决策得到分割结果。本发明克服了手工标注的问题,得到了较为理想的分割结果。
技术领域
本发明属于医学领域,具体涉及一种CT图像分割方法。
背景技术
胰腺癌是一种恶性度很高的消化系统肿瘤,其早期临床症状较隐匿,大多数发现时已是晚期,因此往往预后不佳,虽然胰腺癌的整体发病率在所有恶性肿瘤中较低,但死亡率却居前列,且近年来发病率有上升趋势。利用现有的计算机辅助诊断系统对CT图像中胰腺进行自动的精确分割能够极大地促进对胰腺疾病的评估。然而,由于胰腺的特殊性,分割效果往往与理想情况相差甚远,胰腺分割的难点主要在于:严重的类别不平衡问题,即胰腺在整个CT图像中所占体素的比例往往不足1%,同时胰腺的解剖结构较为复杂,并且相对于其他组织在视觉上有一个模糊的类间边界。
与此同时,经过多年的发展,深度学习的相关算法在计算机视觉领域取得了显著的成果。其中,深度学习的典型代表:卷积神经网络(Convolutional Neural Networks,CNN)也被逐渐地应用于医学图像处理领域之中。如Roth等人利用CNN模型对图像特征的高表示能力来对CT图像中的胰腺组织进行有效的分割,他们率先将全卷积网络(FullConvolution Network,FCN)用于胰腺的分割,展示了CNN模型在医学图像分割上的潜力,但是无论是基于2D卷积还是3D卷积的CNN模型,都存在一定的缺陷。基于2D卷积的CNN模型只能处理二维的CT图像切片,无法学习到整体CT图像中蕴含的三维信息。而基于3D卷积的CNN模型使用三维数据块作为输入,这种方法充分的关注了三维CT图像中的上下文信息,但是3D的图像特征往往需要占用巨大的显存,因此限制了输入数据的大小,同时由于胰腺分割的类别不均衡问题,随机选取的3D图像块往往无法包含足够的正样本来有效的训练网络。
发明内容
为了克服现有技术的不足,本发明提供了一种基于集成深度卷积神经网络的胰腺CT图像分割方法,采用由粗到细的两阶段分割框架对CT图像中的胰腺进行精确的分割。首先构建了一种引入注意力模块和跨层级密集连接的三维U型编码-解码结构的CNN网络,即Unet模型作为识别网络,将识别网络应用在胰腺图像分割的两阶段;在粗分割阶段,对原图进行降采样归一化预处理,然后随机取若干数据块作为网络的输入进行训练,由此得到胰腺的粗分割结果;在细分割阶段,用边界框包含胰腺区域,在边界框区域内取图像块进行训练;在识别时,使用粗分割结果确定胰腺所在区域,再用细分割进行预测,得到细分割结果。最终将两阶段的结果进行投票决策,得到最后的分割结果。本发明克服了手工标注的问题,得到了较为理想的分割结果。
本发明解决其技术问题所采用的技术方案包括以下步骤:
步骤1:构建引入注意力模块和跨层级密集连接的三维Unet网络;
在三维Unet网络中,使用跳跃连接将当前层的编码模块与解码模块连接,同时在跳跃连接中加入注意力模块,当前层编码模块输出的特征和下一层解码模块输出的特征作为注意力模块的输入,注意力模块输出的特征输入到当前层解码模块;
跨层级密集连接机制将第四层解码模块输出的特征分别输入至第一层与第二层解码模块,将第三层解码器输出的特征输入至第一层解码模块,每一层解码模块将通过跨层级密集连接接收到的跨层特征、从上一层接收到的特征以及从注意力模块接收到的特征进行拼接,再进行后续的卷积操作;
步骤2:CT图像预处理;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学深圳研究院;西北工业大学,未经西北工业大学深圳研究院;西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011052799.0/2.html,转载请声明来源钻瓜专利网。





