[发明专利]一种海底管道及泄漏点检测方法有效
| 申请号: | 202010979697.7 | 申请日: | 2020-09-17 |
| 公开(公告)号: | CN112085728B | 公开(公告)日: | 2022-06-21 |
| 发明(设计)人: | 赵新华;王雪;景力涛;杜泽帅 | 申请(专利权)人: | 哈尔滨工程大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/136;G06T5/00;G06T5/40;G06N3/04;G06N3/08;G01M3/04;F17D5/06 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 海底 管道 泄漏 检测 方法 | ||
1.一种海底管道及泄漏点检测方法,其特征是,包括如下步骤:
步骤一:使用水下摄像机拍摄获取水下图像,然后对水下图像进行增强处理,使用高斯滤波法对图像去噪,使用直方图均衡化使图像更加清晰,使用低照度图像增强算法增强图像亮度;
步骤二:建立水下环境海底管道光学图像检测数据集,使用YOLOv3算法对水下管道图像和视频进行检测实验;
步骤三:制作水下环境海底管道光学图像分割数据集,对水下管道及泄漏目标进行图像分割,融合改进最新实例分割算法MASK R-CNN算法和YOLACT算法,以实现最优的图像分割效果:
首先,针对分割网络特征提取层进行改进:在原FPN网络进行改进,改进网络在原FPN结构的基础上增加了新的H2到H5特征图,H2特征图为直接复制P2层的特征图,之后通过步长为2的3×3卷积使特征图尺寸降为原来的二分之一,再与P3层的特征图横向连接,此处连接的操作为逐像素相加;连接之后再通过一个卷积核尺寸为3×3的卷积层生成下一层特征图H3,之后几层的形成方式与之相同,其中特征图的通道数均为256,与原FPN保持一致;卷积之后都通过ReLU函数进行非线性激活,这些新特征图通过池化层后进入RPN网络进行之后的处理;
然后,针对分割与输出层进行改进,对MASK R-CNN中损失函数的分支Lmask做了部分改进,在Mask R-CNN中Lmask为平均二值交叉熵损失函数,所以提出在L中加入边界加权损失函数;在训练过程中,边界加权损失函数利用距离损失对分割的形状、位置和连续性进行正则化,使其更加接近管道及泄漏点边界,其公式如下:
其中t*为经过二值化后预测的分割结果,t为分割真值经过二值化后的结果,M为分割结果的边界,R为整个分割区域,Mdis为对分割真值分割边框的距离变换,当作一张距离图;
最后,在非极大值抑制方法上使用YOLACT中的Fast NMS方法;将改进后的算法应用到图像分割前,要先制作分割数据集,使用labelme工具对2000张720×576的三通道图打标签,将其按9:1比例分成训练集和测试集,然后形成json文件,在分割训练网络中,分割目标为管道、泄漏点、背景类一共三类,修改分割网络中的代码,在class部分设置为3,与检测实验部分一样,设置输出置信度的阈值为0.6,采用学习率衰减的方式进行训练,每当训练200轮后将学习率设为之前学习率的0.1;将GPU加速置为1,修改训练文件路径,在代码文件夹中打开命令窗口,输入训练代码指令,使网络开始训练,经过1000轮训练后,得到最终的权重文件,将海底管道图像分别送入训练好的分割网络中。
2.根据权利要求1所述的海底管道及泄漏点检测方法,其特征是,所述步骤一具体为:
首先,采集图像中的像素点,将其作为数组运算,让每个像素点乘以不同的权重再与周围的像素点相加,之后取平均;
其次,进行亮度增强,通过三通道图像中的绿色通道取反后与其他通道的像素值相乘得出新的图像层,之后将原图像与新的图像层做一次滤色混合,计算过程如式:
f(a,b)=1-(1-a)×(1-b) (1)
其中a为新图层的像素值,b为原图的像素值;
最后,直方图均衡化,将像素中灰度值分别计数,之后算出每个灰度值对应的概率,从而完成新的灰度值的映射,其映射函数为式:
其中m为统计出的像素点总数,mj为像素灰度值等于j的像素总数;Sk为得到的新的灰度级。
3.根据权利要求1所述的海底管道及泄漏点检测方法,其特征是,所述步骤二具体为:
制作海底管道光学图像检测数据集,管道数据集为水下机器人在海底实际采集的图像,包含带有泄漏点的管道,共有2000张720×576的三通道图像,将其按9∶1比例分成训练集和测试集;获取图像后,使用labellmg工具对数据集进行打签,对2000张训练集和验证集图片使用该工具进行手动标框,形成xml文件,然后转换为txt文件,将图片与txt文件对应放到文件夹中;
使用YOLOv3进行水下管道泄漏点训练与检测,在本次训练实验中,检测目标为管道和泄漏点共2类,所以在YOLOv3训练创建的cfg文件中将classes改为2,将filters改为(classes+5)x3即21;设置输出置信度的阈值为0.6,即预测出结果置信度大于0.6时,输出该预测结果为输出管道和泄漏点,如果小于0.6即认为此时没有泄漏;采用非极大值抑制算法来解决预测结果框重复较多的问题,在预测结果框面积交并比大于0.6的框中选取置信度最高的那一个,去掉其他预测结果框;采用学习率衰减的方式进行训练,每当训练200轮后将学习率设为之前学习率的0.1,从而使训练更易于收敛;在makefile文件中将GPU加速,OpenCV置为1,将训练文件路径进行修改,输入训练指令之后开始训练;
经过1000轮训练后,YOLOv3得到后缀名为.weights的权重文件;使用对应的权重文件对海底管道图片进行检测,使用YOLOv3网络检测出的图片不同类别在同一张图片中显示;待图片检测实验完成,修改检测程序,使用训练好的权重对水下管道视频进行检测。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010979697.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种自动激光焊锡机
- 下一篇:基于忙或闲属性分时段优化制冷的冰箱运行方法





