[发明专利]漏斗胸Haller指数测量方法、电子设备及存储介质有效
申请号: | 202010860272.4 | 申请日: | 2020-08-25 |
公开(公告)号: | CN111739023B | 公开(公告)日: | 2020-11-13 |
发明(设计)人: | 谢松县;彭立宏;邓喜成 | 申请(专利权)人: | 湖南数定智能科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/136;G06T7/62;G06T7/73;G06N3/04;G06N3/08;G16H50/20 |
代理公司: | 长沙国科天河知识产权代理有限公司 43225 | 代理人: | 周达 |
地址: | 410000 湖南省长沙市高新开发*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 漏斗 haller 指数 测量方法 电子设备 存储 介质 | ||
1.漏斗胸Haller指数测量方法,其特征在于,包括:
S1. 获取大量漏斗胸患者胸骨横切面的CT影像,构建训练数据集;
S2. 构建卷积神经网络U-Net模型,采用训练数据集对卷积神经网络U-Net模型进行训练,直到模型收敛,得到训练好的胸骨轮廓分割模型;其中,胸骨轮廓分割模型的训练方法,包括:
(1)设置卷积神经网络U-Net模型参数;
卷积神经网络U-Net模型中卷积层的卷积核大小为3×3,步长为1,激活函数为ReLU函数,padding=1;池化层为最大池化层,大小为2×2,步长为2;输出层的激活函数为softmax;
令
其中:,C为胸骨轮廓分割区域的轮廓曲线;
,Ω为胸骨轮廓分割区域内的像素集,
(2)采用训练数据集,使用随机梯度下降算法对卷积神经网络U-Net模型参数进行训练,直到模型收敛,得到训练好的胸骨轮廓分割模型
其中
S3. 对于任一患者的所有待处理的胸部CT影像,找出其中胸骨凹陷程度最大的胸部CT影像并输入到训练好胸骨轮廓分割模型,分割出其对应的胸骨轮廓图,找出胸骨轮廓图中Haller指数的四个关键点,计算得到Haller指数。
2.根据权利要求1所述的漏斗胸Haller指数测量方法,其特征在于:S1中,收集大量漏斗胸患者胸部CT影像构成漏斗胸患者胸部CT影像集,对漏斗胸患者胸部CT影像集中的各漏斗胸患者胸部CT影像进行人工标注,标记出各漏斗胸患者胸部CT影像中内胸轮廓、胸骨轮廓的界限范围,从漏斗胸患者胸部CT影像集中筛选出其中的胸骨横切面的CT影像,对筛选出的所有胸骨横切面的CT影像进行数据增强、归一化处理、二值化处理后将所有图像调整为统一大小,得到训练数据集。
3.根据权利要求2所述的漏斗胸Haller指数测量方法,其特征在于:S1中,所述数据增强的方法是:通过W/L调窗算法将胸骨横切面的CT影像转为灰度图;
然后将图像边缘部分设置为0,同时根据斜率和截距计算
其中,
将图像的窗宽值和窗位值分别设置为360Hu和60Hu,图片分辨率设置为512像素*512像素后,使用带通滤波器对胸骨横切面的灰度图进行去噪即可。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南数定智能科技有限公司,未经湖南数定智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010860272.4/1.html,转载请声明来源钻瓜专利网。