[发明专利]基于秩次相关的因果结构图的燃气轮机故障预测方法有效

专利信息
申请号: 202010786693.7 申请日: 2020-08-07
公开(公告)号: CN111931421B 公开(公告)日: 2023-09-29
发明(设计)人: 杨静;樊高金;沈安波;江刘峰;朱尤杰;方宝富 申请(专利权)人: 合肥工业大学
主分类号: G06F30/27 分类号: G06F30/27;G06N3/0442;G06N3/047;G06N3/08;G01M15/14;G06F119/02
代理公司: 安徽省合肥新安专利代理有限责任公司 34101 代理人: 陆丽莉;何梅生
地址: 230009 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 相关 因果 结构图 燃气轮机 故障 预测 方法
【说明书】:

发明公开了一种基于秩次相关的因果结构图的燃气轮机故障预测方法,其步骤包括:1、获取所有监测节点向量的数据集;2、为每个监测节点使用秩次相关的方法选择一组候选邻居监测点集;3、在受限空间内使用爬山搜索,通过评分函数完成定向工作,确定本监控节点与其他监测节点间的因果关系;4、直到评分次数超过设定值前获得相应的监测系统因果结构图,并用于训练故障预测模型;从而得到故障预测模型,以实现对故障进行更加准确的预测。本发明能获得更加精准的故障预测模型,从而能对故障进行更加准确的预测。

技术领域

本发明属于数据挖掘领域,具体地说是一种基于秩次相关的因果结构图的燃气轮机故障预测方法。

背景技术

故障检测是由于建立“监控系统”的需要而发展起来的。由于所建系统规模的不断扩大,复杂性的提高以及系统投资的巨大,人们迫切需要提高系统的可靠性和安全性。因而有必要建立一个监控系统来监视整个系统的运行状态,不断检测系统的变化和故障,进而采取必要的措施,防止系统的损坏和事故的发生。而其前提则是必须具有检测和诊断故障的能力。

故障预测通常根据系统历史状态预测故障是否在未来时间发生,及早检测出故障并采取相应的维护措施,预防故障的演变恶化。目前,常用的故障预测方法包括:基于模型的方法,如时间序列预测、卡尔曼滤波、基于机理模型或经验模型的方法等;基于数据的方法,如统计分析、贝叶斯理论、隐马尔可夫模型等;基于人工智能的方法,如神经网络预测、专家系统、模糊逻辑预测等。其中,贝叶斯方法由于具有处理不确定事件的独特能力,在故障预测领域占有重要的地位。贝叶斯网络能够描述随机变量/事件间的依赖关系,是一种不确定性因果关联模型,具有较强的学习能力,因此擅长表达复杂、不确定性的问题。目前贝叶斯网络具备成熟的概率推理算法,易于进行预测推理。以上特点使得贝叶斯网络适合用于故障预测。随着大数据技术的兴起,如何将大数据相关技术应用于燃气轮机状态监测和故障诊断是一个值得研究的课题。燃气轮机机组在运行时不断地产生大量的监测数据,基于这些海量的运行监测数据,开展燃气轮机机组状态分析、性能监测和故障智能诊断预测研究,具有非常重要的现实意义。通过数据建模,可以对燃气轮机机组状态进行实时的健康评估,预测状态趋势,在没有发生重大故障前提前预警,可以早期发现燃气轮机故障,从而避免经济损失、提供维修建议、有助于燃机的安全可靠地运行。然而,这些数据的分布往往是任意的,彼此之间的关系往往具有非线性的特点,对于这种非线性数据的研究是具有一定的挑战。这些运行数据构成一个复杂的网络系统,辨识该复杂系统的网络节点间的联系,有助于燃气轮机的状态监测和故障预测。

而描述复杂网络间关系的杰出模型就是由美国加州大学的Judea Pearl提出的基于概率论和图论的贝叶斯网络模型。Hoyer等对于贝叶斯网络因果模型进行更进一步扩展,提出了加性噪声模型,该模型可以建模非高斯非线性的数据。而燃气轮机机组的运行数据恰恰也是非高斯非线性的。所以,基于加性噪声模型对燃气轮机机组的运行数据进行分析是非常有意义的研究方向。

基于规则的诊断方法,该方法采用直接及启发式知识表示,诊断速度较快,且容易实现编程和系统开发,具有直观方便的优点。不过由于知识库中的故障类型较少,面对新的故障问题时就显得无从下手,极易导致诊断失误或者失败;基于人工神经网络的故障诊断主要是建立故障源和征兆间的映射,具有高度的容错机制及非线性等优点。不过由于神经网络的诊断方法对系统内部的潜在关系不能进行准确的揭示,因而增加了该方法出现误诊的概率;混合型智能诊断方法可以依据发动机组性能参数的不同以及采集存储的历史数据信息按照一定的选用规则选取合理的诊断方法,具有良好的综合性能。

目前这些方法的主要局限包括:

(1)燃气轮机的故障预测采用直接知识表示的方法,速度快,但知识库中的故障较少,面对新的故障时候就不能有效的进行故障预测,很大可能会导致诊断失误;

(2)单独的神经网络诊断方法,不能对燃气轮机系统内部的各部件关系进行准确的揭示,只能通过数据进行表面分析,这也给故障预测带来很大的不确定性。

发明内容

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010786693.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top