[发明专利]一种基于邻居信息和属性网络表征学习的微博用户社团发现方法有效
| 申请号: | 202010742856.1 | 申请日: | 2020-07-29 |
| 公开(公告)号: | CN112084418B | 公开(公告)日: | 2023-07-28 |
| 发明(设计)人: | 徐新黎;肖云月;杨旭华;徐齐婧;周艳波 | 申请(专利权)人: | 浙江工业大学 |
| 主分类号: | G06F16/9536 | 分类号: | G06F16/9536;G06F18/23213;G06Q50/00 |
| 代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
| 地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 邻居 信息 属性 网络 表征 学习 用户 社团 发现 方法 | ||
1.一种基于邻居信息和属性网络表征学习的微博用户社团发现方法,其特征在于:所述方法包括如下步骤:
步骤一:微博网络表示为一个属性网络G=(V,E,F),其中V={v1,v2,...,vn}为节点集合,每个节点表示一个用户,节点数即用户总数n=|V|,E为边集合,所有微博用户的连边关系构成一个邻接矩阵A,每个用户的属性F’={f1,f2,...,fm},微博用户属性数量m=|F’|,所有微博用户的属性表示为一个n行m列的属性信息矩阵F;
步骤二:根据微博用户的连边关系矩阵A,计算节点相似度SAij
其中,cij为用户i与用户j的共同邻居数,wij为邻接矩阵A中用户i与用户j相连的边权,即在用户i与用户j有关注的情况下,节点相似度SAij为两用户的共同邻居数比上节点总数,在两用户没有关注的情况下,SAij为0;
步骤三:对属性信息矩阵F,采用余弦相似度度量标准计算属性接近度矩阵SF;
步骤四:对网络拓扑和属性信息联合建模,设置嵌入向量H的维度d,采用分布式算法进行求解,最小化目标函数J,得到每个用户的嵌入向量H,
其中,等号右边第1项为属性信息的损失函数,等号右边第2项为网络拓扑损失函数,λ为一个标量,是拓扑信息与属性信息所占比例的权衡,当λ=0时,表示嵌入模型只考虑了属性信息,hi、hj分别代表用户i和用户j的向量表征;
步骤五:对每个用户的嵌入向量H进行k-means聚类,得到用户的类别标签,实现社团发现。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010742856.1/1.html,转载请声明来源钻瓜专利网。
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置





