[发明专利]一种基于固定摄像头视觉的移动机器人定位方法有效
| 申请号: | 202010709719.8 | 申请日: | 2020-07-22 |
| 公开(公告)号: | CN111968177B | 公开(公告)日: | 2022-11-18 |
| 发明(设计)人: | 王翔宇;刘晓贝;梁升一;梁静思;刘维明;李世华 | 申请(专利权)人: | 东南大学 |
| 主分类号: | G06T7/73 | 分类号: | G06T7/73;G06T7/80;G06K7/10;G06K7/14;G01C21/20 |
| 代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 罗运红 |
| 地址: | 210000 *** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 固定 摄像头 视觉 移动 机器人 定位 方法 | ||
1.一种基于固定摄像头视觉的移动机器人定位方法,其特征在于,该方法包括以下步骤:
第一步,首先选择一张二维码标志作为模板图像,然后在移动机器人上粘贴该二维码标志,并将通过固定摄像头拍摄到的移动机器人图像作为场景图像,使用ORB算法进行模板图像中的二维码标志和场景图像中的二维码标志的特征点提取,根据模板图像中二维码标志的特征点坐标向量和场景图像中二维码标志的特征点坐标向量间的汉明距离,来计算特征点间的相似度,通过比较特征点两两之间的相似度,为每个在模板图像中的特征点在场景图像中找到最相似的特征点;
第二步,采用半径滤波算法除去第一步中经过特征点初步匹配后的场景图像的点群中的离群值,得到集中分布在场景图像中的二维码标志上的特征点群,再将集中分布的特征点群坐标平均值作为点群中心,从而得到场景图像中的二维码标志中心的图像像素坐标,也即场景图像像素坐标系中的移动机器人的图像像素坐标,进而实现移动机器人在场景图像像素坐标系中的定位;
第三步,在定位出移动机器人在场景图像像素坐标系中的图像像素坐标后,基于摄像机标定,根据摄像机成像模型,建立全局坐标转换关系,将得到的移动机器人的图像像素坐标转换为移动机器人实际的世界坐标,从而实现移动机器人的全局视觉定位。
2.根据权利要求1所述的一种基于固定摄像头视觉的移动机器人定位方法,其特征在于,所述第一步中,使用ORB算法提取出模板图像和场景图像中的特征点,再根据汉明距离进行特征点匹配找到距离最小的特征点匹配对集合,也即为每个在模板图像中的特征点在场景图像中找到与之最相似的特征点,其中汉明距离定义为两个等长字符串对应位置的不同字符的个数,特征向量间的这两种距离越小,则相似度越高,设模板图像和场景图像中的两个特征点对应的图像像素点坐标分别为和则这两个特征点对应的像素坐标的汉明距离为:
3.根据权利要求2所述的一种基于固定摄像头视觉的移动机器人定位方法,其特征在于,所述第二步中,在场景图像中,然后选择合适的滤波半径,对于场景图像中的某一个特征点,如果其他特征点与该特征点之间的二维坐标距离小于或等于滤波半径,则称其他特征点为该特征点的近邻,遍历场景图像中的所有特征点,对每个特征点的近邻数量进行统计,设定合适的阈值数量,近邻数量达到阈值数量的特征点进行保留,没有达到的则剔除,再求点群的平均坐标作为点群中心,从而得到场景图像像素坐标系中的二维码标志中心的图像像素坐标,也即场景图像像素坐标系中的移动机器人的图像像素坐标,进而实现移动机器人在场景图像像素坐标系中的定位。
4.根据权利要求3所述的一种基于固定摄像头视觉的移动机器人定位方法,其特征在于,所述第三步中,在定位出移动机器人在场景图像中的图像像素坐标后,根据摄像机成像模型,建立坐标转换关系,建立经典的全局坐标转换模型,这个全局坐标转换模型中的关键参数就是相机参数,通常这些参数要通过实验的方式进行计算得到,此过程是对摄像机标定;整个摄像机几何模型涉及四个坐标系,分别是图像像素坐标系、图像物理坐标系、相机坐标系、世界坐标系,将得到的移动机器人在图像像素坐标系里的图像像素坐标转换为移动机器人在世界坐标系里的实际的世界坐标,从而实现移动机器人的全局视觉定位。
5.根据权利要求4所述的一种基于固定摄像头视觉的移动机器人定位方法,其特征在于,步骤三中的定位方法具体如下:
(1)图像物理坐标系到图像像素坐标系的转换
图像像素坐标系是一个二维直角坐标系,反映了相机芯片中像素的排列情况,其原点O’位于图像的左上角,u坐标轴与v坐标轴分别与图像的两条边重合,像素坐标为离散值,以像素为单位,图像物理坐标系在理想状态下,图像中心O为坐标系原点,x坐标轴与y坐标轴分别与u坐标轴与v坐标轴平行,两个坐标系是平移量为(u0,v0)的平移关系;
设相机感光元件中单个像素点的物理尺寸为dx×dy,(x,y)为移动机器人在图像物理坐标系里的图像物理坐标,则第二步中得到的移动机器人在图像像素坐标系里的图像像素坐标(u,v)满足:
将上式写成齐次形式,有:
上式完成了图像物理坐标系到图像像素坐标系的转换;
(2)相机坐标系到图像物理坐标系的转换
相机坐标系是一个三维直角坐标系,其原点Oc位于镜头的光心处,xc轴与yc轴分别与图像平面的两边平行,zc轴为镜头光轴,与像平面垂直;
设移动机器人在相机坐标系下坐标为P(xc,yc,zc),点P通过投影中心的光线投影到像平面上,在图像物理坐标平面上的投影点P’(x,y)即为移动机器人在图像物理坐标系下的坐标,所以投影点(’在相机坐标系下的坐标为(x,y,f),其中,f为摄像头光心Oc到图像物理坐标系原点O’的垂直距离,根据相似三角形原理,有:
同样地,将上式写成齐次形式:
上式完成了从相机坐标系到图像物理坐标系的转换;
(3)世界坐标系到相机坐标系的转换
世界坐标系描述的是物体在实际空间中的位置,相机坐标系可以通过对世界坐标系做旋转操作R3×3和平移操作t3×1得到,设移动机器人在世界坐标系下的世界坐标为(x3,yw,zw),则转换关系可以表示为:
上式完成了从世界坐标系到相机坐标系的转换;
(4)世界坐标系到图像像素坐标系的转换
综合(1)(2)(3)中的公式,可得世界坐标系到像素坐标系之间的转换关系,有:
根据上式,令:
K1表达式中的fx、fy为摄像头在x轴和y轴方向上的归一化焦距,单位为像素;
同样地,令:
K2=[R3×3 t3×1]
其中,K1被称为相机的内参矩阵,K2被称为相机的外参矩阵,令K=K1K2,K则被称为投影矩阵;
世界坐标系与像素坐标系之间的转换关系公式可以写成:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010709719.8/1.html,转载请声明来源钻瓜专利网。





