[发明专利]基于不平衡数据深度信念网络的并行入侵检测方法和系统有效

专利信息
申请号: 202010689950.5 申请日: 2020-07-17
公开(公告)号: CN111860638B 公开(公告)日: 2022-06-28
发明(设计)人: 李肯立;杜亮;余思洋;杨志邦;周旭;刘楚波;唐卓 申请(专利权)人: 湖南大学
主分类号: G06V10/762 分类号: G06V10/762;G06V10/764;G06V10/82;G06K9/62;G06N3/00;G06N3/04;G06N3/08
代理公司: 武汉臻诚专利代理事务所(普通合伙) 42233 代理人: 宋业斌
地址: 410082 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 不平衡 数据 深度 信念 网络 并行 入侵 检测 方法 系统
【权利要求书】:

1.一种基于不平衡数据深度信念网络的并行入侵检测方法,其特征在于,包括以下步骤:

(1)获取不平衡数据集,利用领域清理规则算法对该不平衡数据集进行欠采样处理,并使用基于引力的聚类方法对欠采样处理后的不平衡数据集进行聚类处理,以得到聚类处理后的不平衡数据集;步骤(1)具体包括以下子步骤:

(1-1)获取不平衡数据集DS;

(1-2)从步骤(1-1)得到的不平衡数据集DS中获取一个样本点x以及该样本点x的k近邻数据Dk,其中k表示最近邻参数;

(1-3)获取步骤(1-2)得到的k近邻数据Dk中与样本点x的类别不同的所有样本所构成的集合Nk、以及该集合Nk中的样本数目num;

(1-4)判断步骤(1-3)获取的样本数目num是否大于或等于k-1,如果是,则转入步骤(1-5),否则转入步骤(1-6);

(1-5)判断样本点x的类别是否为多数类样本,如果是,则更新不平衡数据集DS为DS=DS-x,然后进入步骤(1-6),否则更新不平衡数据集DS为DS=DS-Nk,然后进入步骤(1-6);

(1-6)针对不平衡数据集DS中的剩余样本点,重复上述步骤(1-2)至(1-5),直到不平衡数据集DS中的所有样本点都被处理完毕为止,从而得到更新后的不平衡数据集DS;

(1-7)设置计数器i=1;

(1-8)判断i是否等于不平衡数据集DS中的样本点总数,如果是则进入步骤(1-14),否则进入步骤(1-9);

(1-9)从步骤(1-6)更新后的不平衡数据集DS中读入第i个新的样本点其中表示第i个样本中的第e2个特征属性值,并判断优选设置的聚类集合S是否为空,如果是则转入步骤(1-10),否则转入步骤(1-11),其中e2∈[1,n];

(1-10)将样本点di初始化为一个新的类簇Cnew={di},同时将类簇Cnew的质心μ设置为di,并将类簇Cnew加入到聚类集合S中,转入到步骤(1-13);

(1-11)计算聚类集合S中的每个类簇对di的引力,并得到引力集合G={g1,g2,…,gng},并从引力集合G中得到最大引力gmax及其对应的类簇Cmax,其中ng表示聚类集合S中类簇的总数;

(1-12)判断最大引力gmax是否小于设定的阈值r,如果是,则返回步骤(1-10),否则将样本点di合并到类簇Cmax中,并更新合并了样本点di后的类簇Cmax的质心μmax,然后转入步骤(1-13);

(1-13)设置计数器i=i+1,并返回步骤(1-8);

(1-14)遍历聚类集合S中的所有类簇,并判断是否每个类簇中所有样本点的类型都是多数类样本,如果是,则根据采样率sr随机保存该类簇中的多数类样本,然后针对剩余类簇重复遍历过程,否则针对剩余类簇重复遍历过程;

(2)将步骤(1)获得的聚类处理后的不平衡数据集输入训练好的深度信念网络DBN模型中,以提取特征,再将提取的特征输入训练好的DBN-WKELM多分类器模型中的多个DBN-WKELM基分类器中,以得到多个初步分类结果,通过自适应加权投票法计算各个DBN-WKELM基分类器的权重,并根据多个权重和多个初步分类结果获取最终的分类结果、以及该分类结果对应的入侵行为类别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学,未经湖南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010689950.5/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top