[发明专利]一种无线传感网异常检测方法有效

专利信息
申请号: 202010497988.2 申请日: 2020-06-03
公开(公告)号: CN111654874B 公开(公告)日: 2023-02-24
发明(设计)人: 屈洪春;姜振凤;贾丽娜;曹旨昊;徐丽 申请(专利权)人: 枣庄学院
主分类号: H04W24/02 分类号: H04W24/02;H04W24/06;H04W84/18
代理公司: 济南泉城专利商标事务所 37218 代理人: 赵玉凤
地址: 277132 *** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 无线 传感 异常 检测 方法
【说明书】:

发明公开一种无线传感器网异常检测方法,本方法基于融合理论,融合模糊孪生支持向量机和自适应迭代寻优的无线传感网异常检测系统,主要目的是解决当前无线传感网异常检测效率不高、精度不高、泛化能力较弱的问题。该系统经过测试,展示出强大的检测能力、更高的分类准确率和更广泛的应用场景,其泛化能力较强,可广泛的应用于诸多无线传感网络异常检测环境中,更提高了检测的准确性和高效性。

技术领域

本发明涉及一种融合模糊孪生支持向量机和自适应迭代寻优的无线传感网异常检测方法,属于传感器网数据处理技术领域。

背景技术

无线传感网络(Wireless Sensor Networks,WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。无线传感网部署方便、价格低廉、可以大规模自组织网络,并且传感器具备微型化、智能化、多功能化等特点。因此无线传感网被广泛应用于农业生产、环境检测、智能交通、智能家居等领域。例如在农业生产过程中,通过建立WSN农业环境自动检测系统,实时采集和控制大棚种植室内及土壤的温度、湿度,光照强度,珍贵经济作物的生长规律等影响农作物生长的因素,可以有效的提高农业集约化生产程度,提高农业生产种植的科学性。为了及时的监测出各种可能发生的突发事件(森林火灾、交通堵塞、室内空气污染),必须准确、迅速的判断出传感器采集到的异常数据,这对于应对突发事件,迅速采取有效措施,这对于避免事件的发生或者降低影响具有十分重要的意义。

近年来,在学术以及工业等领域的共同推进下,无线传感网络异常检测领域取得了许多成果。目前主要的无线传感网络异常检测方法和系统如下:

一种是基于人工免疫和K均值聚类的无线传感网异常检测方法。该方法将传感网监测节点采集到的数据进行压缩存储,然后采取K均值聚类的方法,将正常数据和异常数据聚集到不同的类簇,从而完成异常数据检测。

另一种方法是基于变宽直方图的全局异常数据的检测方法,它将动态感知数据以数据融合的方式聚合成为变宽的直方图并执行检测过程。

但是,上述利用人工免疫和K均值聚类的方法,缺点在于对监测数据进行压缩存储时,若数据没有呈现一定的规律性,并不能有效的节约资源和提高检测效率;并且单纯的利用传统的K均值聚类方法也不能有效的提高监测精度。另一种基于变宽直方图的全局异常数据的检测方法并没有有效的提升异常数据监测精度。当前无线传感网异常检测存在效率不高、精度不高、泛化能力较弱的问题。

技术方案

为了解决现有技术存在的问题,本发明提出了一种无线传感网异常检测方法,融合模糊孪生支持向量机和自适应迭代寻优,解决当前无线传感网异常检测效率不高、精度不高、泛化能力较弱的问题。

为了解决所述技术问题,本发明采用的技术方案是:一种无线传感网异常检测方法,包括以下步骤;

S1、传感器监测节点实时汇集来自各个传感器监测的数据,形式原始数据集x={x1,x2,...,xi,...,xn},xi∈Rn,i=1,2,...,n,xi表示传感器采集的数据,并以无线通信的方式进行传输和存储;

S2、对传感器采集到的数据集进行数据预处理,所述数据预处理包括数据归一化处理、类不平衡处理以及训练数据集、检测数据集的划分,归一化处理后的数据集为X={X1,X2,...,Xi,...,Xn};

S3:建立无线传感网异常检测模型,利用自适应迭代寻优搜索模糊孪生支持向量机的惩罚系数C,将训练数据集作为数据输入,建立无线传感网异常检测模型;

S4:利用已经建立的无线传感网异常检测模型,将检测数据集作为模型的输入,根据模型的输出结果,判断检测数据集中正常数据和异常数据,完成无线传感网异常数据检测。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于枣庄学院,未经枣庄学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010497988.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top