[发明专利]基于深度学习的剪切波弹性图鉴别乳腺结节良恶性的方法在审

专利信息
申请号: 202010415779.9 申请日: 2020-05-16
公开(公告)号: CN111681210A 公开(公告)日: 2020-09-18
发明(设计)人: 王守超 申请(专利权)人: 浙江德尚韵兴医疗科技有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04;G06N3/08
代理公司: 杭州中成专利事务所有限公司 33212 代理人: 周世骏
地址: 310012 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 剪切 弹性 图鉴 乳腺 结节 恶性 方法
【权利要求书】:

1.一种基于深度学习的剪切波弹性图鉴别乳腺结节良恶性的方法,其特征在于,包括以下步骤:

(1)收集有结节的超声乳腺普通B超图像和剪切波弹性图像的病例数据,根据病理结果构建良恶性分类数据集;

(2)选择基础网络结构,使用旋转池化卷积层替换部分卷积层,构建良恶性识别网络结构;

(3)网络输入增加结节掩模信息,在训练集上进行数据增强,训练过程中使用可分离Dropout计算提高模型泛化能力;

(4)输入测试图像,进行多图像块和多模型测试评价模型性能,对图像进行乳腺结节良恶性判断。

2.根据权利要求1所述的方法,其特征在于,所述步骤(1)包括:

(1.1)收集有结节的超声乳腺普通B超图像和剪切波弹性图像的病例数据,以病例为单位,将普通B超图像和剪切波弹性图像一一对应;

(1.2)根据手术病理结果划分良恶性;对于多结节情况,明确每个结节的病理结果;

(1.3)裁剪图像上非超声区域,勾画结节位置,生成结节掩模图像;

(1.4)以病例为单位,按照三交叉划分训练集和测试集。

3.根据权利要求1所述的方法,其特征在于,所述步骤(2)包括:

(2.1)选取DenseNet作为基础网络结构;

(2.2)构建169层DenseNet网络结构,网络输入图像大小224×224,修改输入特征通道数为4;首先经过7×7卷积和3×3最大池化得到64个下采样2倍的112×112特征图,然后依次经过4个增长率是32的密集连接块,每个密集连接块分别由6、12、32、32个使用了1×1卷积降低特征通道的3×3卷积层稠密连接组成,密集连接块之间使用由批量归一化层、1×1卷积层和2×2平均池化层组成的过渡层减小特征图的数量;网络输出1664个下采样32倍的7×7特征图,最后经过全局平均池化输出预测类别概率;

(2.3)结合网络的局部感受野、权重绑定和池化策略,使用旋转卷积核参数的方法将旋转不变性编码加进卷积层;卷积核在平面内以中心位置分别旋转0度、45度、90度、135度、180度、225度、270度和315度,得到8个卷积核;在做卷积时,8个卷积核分别对输入特征通道进行卷积,得到8个独立输出特征通道,最后在8个通道图之间做最大池化,作为RPC层输出的最终特征图像;训练时前向过程和普通网络一样,误差反向传播时与最大值池化层一致;在DenseNet网络最后1个密集连接块使用RPC层替换3×3卷积层,学习到旋转不变特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江德尚韵兴医疗科技有限公司,未经浙江德尚韵兴医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010415779.9/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top