[发明专利]基于深度学习的通用印刷缺陷检测方法及其模型在审

专利信息
申请号: 202010397628.5 申请日: 2020-05-12
公开(公告)号: CN111709909A 公开(公告)日: 2020-09-25
发明(设计)人: 汪从玲 申请(专利权)人: 安徽艾睿思智能科技有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04;G06N3/08;G06K9/46;G06K9/62
代理公司: 合肥市上嘉专利代理事务所(普通合伙) 34125 代理人: 李璐
地址: 232200 安徽省合肥市高*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 通用 印刷 缺陷 检测 方法 及其 模型
【说明书】:

发明公开了一种基于深度学习的通用印刷缺陷检测方法,包括以下步骤:S1:获取缺陷印刷图像和对应的模板图像,进行初匹配;S2:对获取的缺陷图像进行人工标注,生成训练样本集,并对生成的训练样本集进行预处理;S3:搭建基于深度学习的卷积神经网络;S4:利用训练样本集离线训练深度学习算法;S5:将待检测后的缺陷图像和模板图像输入至预先训练好的印刷缺陷检测模型中进行检测,得出检测结果。还公开了一种基于深度学习的通用印刷缺陷检测模型。本发明基于深度学习方法建立深度卷积神经网络,通过印刷缺陷检测模型进行印刷缺陷检测,显著提高了印刷缺陷的检测速度和效率,该方法模型简洁,成本低,检测速度快,通用性强。

技术领域

本发明涉及工业检测领域,特别是涉及一种基于深度学习的通用印刷缺陷检测方法及其模型。

背景技术

随着印刷技术的普及及其快速的更新换代,工业产线的印刷产品,有着极大的产量需求。由于印刷生产的工艺不成熟,印刷产品上通常存在各种缺陷,例如缺印、漏印和多印等缺陷,而这些存在缺陷的印刷产品会影响用户的使用体验,因而是需要筛选剔除,禁止这些瑕疵产品流入市场。尽管过去几十年中,印刷技术生产水平不断提高,但是对印刷产品的缺陷检测仍然依靠低效率的人工筛选的方法和传统的图像处理的方法。基于人工筛选的印刷缺陷检测方法效率低下,并且存在人的主观因素影响,使得缺陷检测标准不统一,而且提高了厂商的雇佣成本。基于图像处理的传统方法则要求模板图像和待检图像非常精确的配准,才能较好地进行缺陷检测,而且对光照变化也不具有鲁棒性。否则性能很差,不能满足实际应用的要求,印刷缺陷检测成为制约印刷产品生产自动化的重要环节。

随着深度学习技术的快速发展,使得传统图像处理算法无法解决的难题相继得到解决,使用传统图像处理方法进行缺陷检测具有很大的局限性,因为模板图像和待检图像进行非常精确的配准是很难实现的,这使得传统基于像素比较的方法有较高的误检,并且待检图像和模板图像因为采集图片时的环境变化,可能存在图像形变、图像亮度变化等情况,也会造成传统图像处理方法的误检。

因此亟需提供一种新型的印刷缺陷检测方法来解决上述问题。

发明内容

本发明所要解决的技术问题是提供一种基于深度学习的通用印刷缺陷检测方法及其模型,能够显著提高印刷缺陷的检测速度和效率。

为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于深度学习的通用印刷缺陷检测方法,包括以下步骤:

S1:获取缺陷印刷图像和对应的模板图像,进行初匹配;

S2:对获取的缺陷图像进行人工标注,生成训练样本集,并对生成的训练样本集进行预处理;

S3:搭建基于深度学习的卷积神经网络;

S4:利用训练样本集离线训练深度学习算法;

S5:将待检测后的缺陷图像和模板图像输入至预先训练好的印刷缺陷检测模型中进行检测,得出检测结果。

在本发明一个较佳实施例中,在步骤S1中,初匹配的具体步骤包括:

采用平均绝对差算法,选取缺陷图像印刷定位点位置局部图像块,遍历模板图像对应位置上下左右50像素以内的相同尺寸的图像块,使用平均绝对差公式计算其与定位点局部图像块的相似度;

找到与定位点局部图像块最相似的位置作为最终匹配结果,根据偏移量调整缺陷图像的位置,完成初匹配。

在本发明一个较佳实施例中,在步骤S2中,人工标注为生成一张与缺陷图像同样大小的的二值图像,对处于缺陷位置的像素值及不是缺陷位置的像素值分别进行标记,得到标签图片。

在本发明一个较佳实施例中,在步骤S2中,预处理的具体步骤包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽艾睿思智能科技有限公司,未经安徽艾睿思智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010397628.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top