[发明专利]一种基于深度学习的智能避障方法在审
| 申请号: | 202010377690.8 | 申请日: | 2020-05-07 |
| 公开(公告)号: | CN111522346A | 公开(公告)日: | 2020-08-11 |
| 发明(设计)人: | 刘益岑;范松海;龚奕宇;刘小江;马小敏;罗磊;吴天宝 | 申请(专利权)人: | 国网四川省电力公司电力科学研究院 |
| 主分类号: | G05D1/02 | 分类号: | G05D1/02 |
| 代理公司: | 成都弘毅天承知识产权代理有限公司 51230 | 代理人: | 李颖 |
| 地址: | 610031 四川省成*** | 国省代码: | 四川;51 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 深度 学习 智能 方法 | ||
本发明涉及一种基于深度学习的智能避障方法,包括步骤一:训练针对变电站特有障碍物检测的神经网络模型,并对障碍物的风险评级;步骤二:将经过训练的巡检机器人放入变电站环境中,基于神经网络模型进行巡检;步骤三:当障碍物引发巡检机器人报警时,调用神经网络模型进行检测,检测不同的障碍物,对巡检机器人进行不同方式的控制。本发明针提供了一种基于深度学习的智能避障方法,从而用巡检机器人代替人工巡检,避免漏检,减少人工成本,且本发明是一种基于神经网络模型来训练变电站巡检机器人的方法改变了传统巡检机器人的避障方式,极大的提高了巡检机器人避障的智能性,扩大了巡检机器人的巡检范围。
技术领域
本发明属于机器技术领域,尤其涉及一种基于深度学习的智能避障方法。
背景技术
伴随着整个社会的高速发展,人们的生活越来越离不开电,并且对电的需求越来越大,因此变电站的数量急剧上升。变电站是电供应的重要一环,变电站长久、稳定的运行是保障电能顺利供应的先决条件。
变电站稳定的运行离不开对其日常巡检,传统采用人工巡检方式存在下列问题:第一,变电站需要一年四季长期巡检,部分恶劣天气极易威胁工作人员生命安全。第二,巡检任务需要工作人员具有极高的工作经验,因为经验不足造成的漏检将留下严重的安全隐患。第三,目前多数大型变电站都分布于交通、生活不便的郊区,都进一步增加了人工成本。因此,采用巡检机器人代替人工巡检已经成为变电站巡检的主流。
传统巡检机器人是通过激光雷达或超声波雷达等传感器探测前方障碍物距离信息,指导巡检机器人避障,在变电站环境中,杂草会引发大量的激光雷达报警,但杂草并不会威胁到巡检机器人安全,此外传统避障方式没有检测障碍物类别模块,在杂草过于茂盛的环境中,巡检机器人将无路可走。
传统巡检机器人在复杂的室外环境需要进行自主导航移动,但是目前还没有一种针对杂草过多的变电站环境的有效避障方法。
发明内容
本发明针对背景技术中的缺点和问题加以改进和创新提供了一种基于深度学习的智能避障方法,从而用巡检机器人代替人工巡检,减少部分恶劣天气对工作人员生命威胁,避免漏检,减少人工成本,且本发明是一种基于神经网络模型来训练变电站巡检机器人的方法改变了传统巡检机器人的避障方式,极大的提高了巡检机器人避障的智能性和自主导航能力,扩大了巡检机器人的巡检范围。
本发明的技术方案是构造一种基于深度学习的智能避障方法,所述步骤如下:
步骤一:训练针对变电站特有障碍物检测的神经网络模型,并对障碍物的风险评级;
步骤二:将经过训练的巡检机器人放入变电站环境中,基于神经网络模型进行巡检;
步骤三:当障碍物引发巡检机器人报警时,调用神经网络模型进行检测,检测不同的障碍物,对巡检机器人进行不同方式的控制。
优选地,步骤一中所述的神经网络模型需要由大量变电站的图片数据样本训练得到,以便于该模型应对变电站各类路况。
优选地,步骤二中所述的变电站环境指一段包含杂草、碎石等障碍物的道路。
优选地,所述不同障碍物分为无危险障碍物和有危险障碍物,所述无危险障碍为杂草,所述有危险障碍物为碎石。
本发明有益效果:
与人工巡检机器人相比,使用本发明的巡检机器人可以代替人工巡检,减少部分恶劣天气对工作人员生命威胁,避免漏检,减少人工成本;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网四川省电力公司电力科学研究院,未经国网四川省电力公司电力科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010377690.8/2.html,转载请声明来源钻瓜专利网。





