[发明专利]图像处理方法及装置、电子设备和存储介质有效

专利信息
申请号: 202010306929.2 申请日: 2020-04-17
公开(公告)号: CN111507408B 公开(公告)日: 2022-11-04
发明(设计)人: 王新江;张士龙;冯俐铜;张伟 申请(专利权)人: 深圳市商汤科技有限公司
主分类号: G06V10/80 分类号: G06V10/80;G06V10/40;G06N3/04;G06N3/08
代理公司: 北京林达刘知识产权代理事务所(普通合伙) 11277 代理人: 刘新宇
地址: 518054 广东省深圳市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 处理 方法 装置 电子设备 存储 介质
【说明书】:

本公开涉及一种图像处理方法及装置、电子设备和存储介质,所述方法包括:对待处理图像进行M级特征提取,得到所述待处理图像的M级第一特征图,所述M级第一特征图中各级第一特征图的尺度不同,M为大于1的整数;对与各级第一特征图对应的特征图组分别进行尺度调整及融合,得到M级第二特征图,每个特征图组包括所述第一特征图以及与所述第一特征图相邻的第一特征图;对所述M级第二特征图进行目标检测,得到所述待处理图像的目标检测结果。本公开实施例可提高目标检测的效果。

技术领域

本公开涉及计算机技术领域,尤其涉及一种图像处理方法及装置、电子设备和存储介质。

背景技术

在通过深度学习对图像进行处理的过程中,通常需要对图像中目标(例如物体、动物、行人等)进行检测,确定出图像中目标的位置和类别等信息。然而,图像中目标的尺度可能相差较大,例如位于图像中近处和远处的绵羊。在相关技术中,对图像中尺度相差较大的目标的检测效果较差。

发明内容

本公开提出了一种图像处理技术方案。

根据本公开的一方面,提供了一种图像处理方法,包括:对待处理图像进行M级特征提取,得到所述待处理图像的M级第一特征图,所述M级第一特征图中各级第一特征图的尺度不同,M为大于1的整数;对与各级第一特征图对应的特征图组分别进行尺度调整及融合,得到M级第二特征图,每个特征图组包括所述第一特征图以及与所述第一特征图相邻的第一特征图;对所述M级第二特征图进行目标检测,得到所述待处理图像的目标检测结果。

在一种可能的实现方式中,与第i级第一特征图对应的特征图组包括第i-1级第一特征图、第i级第一特征图及第i+1级第一特征图,i为整数且1iM,

所述对与各级第一特征图对应的特征图组分别进行尺度调整及融合,得到M级第二特征图,包括:对所述第i-1级第一特征图进行尺度缩小,得到第一个第i级第三特征图;对所述第i级第一特征图进行尺度不变的变换,得到第二个第i级第三特征图;对所述第i+1级第一特征图进行尺度放大,得到第三个第i级第三特征图;对所述第一个第i级第三特征图、所述第二个第i级第三特征图及第三个第i级第三特征图进行融合,得到第i级第二特征图,其中,所述第一个第i级第三特征图、所述第二个第i级第三特征图及第三个第i级第三特征图的尺度相同。

在一种可能的实现方式中,与第1级第一特征图对应的特征图组包括所述第1级第一特征图及第2级第一特征图,所述对与各级第一特征图对应的特征图组分别进行尺度调整及融合,得到M级第二特征图,包括:

对所述第1级第一特征图进行尺度不变的变换,得到第一个第1级第三特征图;对所述第2级第一特征图进行尺度放大,得到第二个第1级第三特征图;对所述第一个第1级第三特征图及所述第二个第1级第三特征图进行融合,得到第1级第二特征图,其中,所述第一个第1级第三特征图与所述第二个第1级第三特征图的尺度相同。

在一种可能的实现方式中,与第M级第一特征图对应的特征图组包括第M-1级第一特征图及所述第M级第一特征图,所述对与各级第一特征图对应的特征图组分别进行尺度调整及融合,得到M级第二特征图,包括:

对所述第M-1级第一特征图进行尺度缩小,得到第一个第M级第三特征图;对所述第M级第一特征图进行尺度不变的变换,得到第二个第M级第三特征图;对所述第一个第M级第三特征图及所述第二个第M级第三特征图进行融合,得到第M级第二特征图,其中,所述第一个第M级第三特征图与所述第二个第M级第三特征图的尺度相同。

在一种可能的实现方式中,所述对所述第i-1级第一特征图进行尺度缩小,得到第一个第i级第三特征图,包括:通过第一卷积层对所述第i-1级第一特征图进行卷积,得到所述第一个第i级第三特征图,所述第一卷积层的卷积核尺寸为N×N,步长为n,N、n为大于1的整数,所述第i-1级第一特征图的尺度为所述第i级第一特征图的尺度的n倍;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市商汤科技有限公司,未经深圳市商汤科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010306929.2/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top