[发明专利]膳食方案反应性预测模型及建模方法、电子设备有效
| 申请号: | 202010222086.8 | 申请日: | 2020-03-26 |
| 公开(公告)号: | CN111445980B | 公开(公告)日: | 2021-11-09 |
| 发明(设计)人: | 张永亮;叶骏;高向阳 | 申请(专利权)人: | 北京动亮健康科技有限公司 |
| 主分类号: | G16H20/60 | 分类号: | G16H20/60;G06N20/00;G06K9/62 |
| 代理公司: | 北京美智年华知识产权代理事务所(普通合伙) 11846 | 代理人: | 梁忠益;汪永生 |
| 地址: | 100097 北京市海*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 膳食 方案 反应 预测 模型 建模 方法 电子设备 | ||
1.一种膳食方案反应性预测模型的建模方法,其特征在于,包括如下步骤:
S101:采集训练数据并进行预处理,所述采集训练数据并进行预处理的方法包括:采集n例训练用的不同的代谢疾病患者的指标和膳食信息数据;通过评价代谢疾病患者的指标得到膳食方案效果;以及通过分析膳食方案效果筛选出显著影响因素;其中,所述代谢疾病患者的指标包括一般指标、综合评估指标和代谢指标;所述显著影响因素从代谢疾病患者的指标中筛选出,所述通过评价代谢疾病患者的指标得到膳食方案效果的方法包括:基于给定膳食方案周期开始和给定膳食方案周期结束的代谢指标变化情况,评价膳食方案效果为有效或无效,给定膳食方案周期为一个月以上;
S102:设置XGBoost的训练参数;
S103:以显著影响因素和膳食信息数据作为模型的输入,以膳食方案效果作为模型的输出,基于XGBoost算法采用十折交叉验证法对模型进行训练;
S104:使用步骤S103中训练好的模型进行预测;
所述基于XGBoost算法采用十折交叉验证法对模型进行训练的方法包括:
采用XGBoost算法生成一个分类树的集合,每个分类树利用十折交叉验证法进行训练,将对应每棵树的叶子节点得分相加,对第i个样本的特征计算出预测估计值,建立目标函数,再将机器学习模型输出的预测估计值经过四舍五入后定义为膳食方案效果的有无;其中,i为1到n的自然数,n表示训练用的代谢疾病患者的样本数量,n为大于或等于1000的自然数;
所述对第i个样本的特征计算出的预测估计值的计算公式如公式1所示:
公式1
其中,fk表示每一棵回归树的预测结果,K为回归树的数量,xi表示第i个样本的特征,yi表示第i个样本的预测估计值,公式1表示给定一个输入值xi,输出值为K棵回归树的预测估计值yi。
2.根据权利要求1所述的膳食方案反应性预测模型的建模方法,其特征在于,所述一般指标包括年龄、性别、受教育程度和疾病史,所述一般指标在给定膳食方案周期开始前采集;
所述综合评估指标包括临床指标和膳食习惯,所述临床指标包括:心率、身高、吸烟史、家族史、既往疾病史、心电图、超声心动图、实验室检查结果以及临床合并症,所述膳食习惯包括:调查患者的宗教饮食属性、就餐规律程度、饮水量、零食习惯、用盐量、用油量、乳品食用情况、豆制品食用情况、肉类食用情况、蔬菜食用情况以及主食食用情况,所述综合评估指标分别在给定膳食方案周期开始前和给定膳食方案周期结束后采集;
所述代谢指标包括空腹血糖、舒张压、收缩压、总胆固醇、甘油三酯和体重,所述代谢指标分别在给定膳食方案周期开始前和给定膳食方案周期结束后采集;
所述膳食信息数据包括酒精含量、咖啡因含量、碳水化合物含量、膳食纤维、摄入能量、脂肪、蛋白质、钠、糖、水以及碳水化合物有与脂肪的比率,所述膳食信息数据在给定膳食方案周期内的每天进行采集。
3.根据权利要求1所述的膳食方案反应性预测模型的建模方法,其特征在于,满足以下所有条件则认为膳食方案有效,反之则认为膳食方案无效:
如果患有糖尿病时,给定膳食方案周期结束时的空腹血糖值低于给定膳食方案周期开始时的空腹血糖值且降低超过给定血糖阈值,
如果患有高血压时,给定膳食方案周期结束时的血压低于给定膳食方案周期开始时的血压,且收缩压至少降低给定收缩压阈值和舒张压至少降低给定舒张压阈值,其中所述血压包括收缩压和舒张压,
如果患血脂异常时,给定膳食方案周期结束时的血脂低于给定膳食方案周期开始时的血脂,且总胆固醇至少降低给定总胆固醇阈值和甘油三酯至少降低给定甘油三酯阈值,其中所述血脂包括总胆固醇和甘油三酯,
如果肥胖或超重时,给定膳食方案周期结束时的体重低于给定膳食方案周期开始时的体重,且控制在正常水平,且至少降低给定体重阈值。
4.根据权利要求1所述的膳食方案反应性预测模型的建模方法,其特征在于,所述通过分析膳食方案效果筛选出显著影响因素的方法包括:基于单变量分析筛选法分析代谢疾病患者的指标,对于服从正态分布的数据采用独立T检验,对于不服从正态分布的数据采用Wilconxon秩和检验。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京动亮健康科技有限公司,未经北京动亮健康科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010222086.8/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种爬虫正文匹配方法
- 下一篇:一种网络爬虫的页面列表信息自动提取方法及系统





