[发明专利]一种基于声音信号的机床故障预测方法在审
申请号: | 202010202454.2 | 申请日: | 2020-03-20 |
公开(公告)号: | CN111413925A | 公开(公告)日: | 2020-07-14 |
发明(设计)人: | 杨建中;郝勇;方问潮;黄德海;陈雨 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G05B19/406 | 分类号: | G05B19/406 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;孔娜 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 声音 信号 机床 故障 预测 方法 | ||
本发明属于数控机床故障预测相关技术领域,并公开了一种基于声音信号的机床故障预测方法。该预测方法包括下列步骤:(a)对于待预测机床,采集其在正常状态和不同故障状态下发出的音频信号,以此形成机床状态与音频信号一一对应的数据集;(b)对所述数据集中的数据进行数据处理,获得训练数据;(c)构建故障预测神经网络模型,利用所述训练数据对所述预测神经网络模型进行训练,以此获得所需的预测模型,利用该预测模型对于待预测机床的状态进行预测,以此实现机床故障的预测。通过本发明,避免计算零件的特征频率,减少计算量,提高了机床故障类型的识别速度。
技术领域
本发明属于数控机床故障预测相关技术领域,更具体地,涉及一种基于声音信号的机床故障预测方法。
背景技术
机床开动之后,由于各运动副之间作旋转或往复直线滑动,周期地接触和分开,它们之间由于相互运动而产生一定的振动。此外,机床整个传动系统还会发生共振。因此,任何机床不管其结构如何合理。装配如何精确、操作如何得当,一经开动即会产生噪音。如果声音是有节奏的,和谐的,则属于正常现象,如果反之,声音过大,十分刺耳,则属于不正常现象。
数控机床是个多声源的机械,包括电气噪声、电机丝杠噪声、齿轮箱噪声等。齿轮箱可以看作为质量弹簧组成的一个振动系统,轮齿的弹簧刚度具有周期性变化的性质,制造装配误差、传动误差的存在和扭矩的变动形成激振力,在此激振力的作用下,齿轮会产生振动,此振动通过轴、轴承传给齿轮箱,轴承、轴等的振动也传给齿轮箱,产生箱体的振动。同时振动还以固体声和空气声的形式传播成为噪声,齿轮箱运转噪声本质上属于冲击噪声,冲击噪声可以分为两部分,即加速度噪声与自鸣噪声。所谓加速度噪声是指被撞击的物体产生瞬时加速度,从而在空气介质中产生速度势,产生声压。自鸣噪声则指冲击过后物体的自由衰减振动而产生的噪声。实际上是振动在空气中或固体中的传播,所以噪声的频率成分与振动基本上是完全一样的,产生的机理也是一样的。因此可以通过对机床噪声进行频谱分析来分析哪些频率的噪声超过了正常噪声声压范围,从而根据频率相等或者成整数倍判断机床哪个零件出现了故障。
但是机床由大量零件组成,计算每个零件的特征频率计算量较大,且部分零件特征频率计算复杂。因此需要一个方法能实现不用人工计算零件的特征频率就能自动将不同故障的噪声频谱分类为哪个零件出现了故障。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于声音信号的机床故障预测方法,其中通过对采集的机床声音信号进行数据处理,获得不同声音信号对应的频率、幅值和标记值,最后利用数据处理后的声音信号训练神经网络模型,以此获得预测模型,该方法直接对机床噪声频谱分类的方法,避免了计算零件的特征频率,大大减少了计算量,提高了机床故障类型的识别速度。
为实现上述目的,按照本发明的一个方面,提供了一种基于声音信号的机床故障预测方法,该预测方法包括下列步骤:
(a)对于待预测机床,采集其在正常状态和不同故障状态下发出的音频信号,以此形成机床状态与音频信号一一对应的数据集;
(b)对所述数据集中的数据进行数据处理,获得训练数据,所述数据处理按照下列步骤进行:
(b1)对所述音频信号集中的音频信号进行傅里叶处理,获得每个音频信号对应的关于频率和声压关系的频谱图;
(b2)根据正常状态下声压设定声压阈值,将所述频谱图中每个点对应的声压与设定的声压阈值进行比较,对于大于所述声压阈值的点,赋予一个标记值,对于小于所述声压阈值的点,赋予另外一个标记值,以此获得每幅频谱图中每个点对应的标记值;
(c)构建故障预测神经网络模型,利用所述训练数据对所述预测神经网络模型进行训练,以此获得所需的预测模型,对于待预测机床的状态,将其发出的音频信号按照步骤(b)中的方式进行数据处理,将处理后的数据输入所述预测模型获得待预测机床的状态,以此实现机床故障的预测。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010202454.2/2.html,转载请声明来源钻瓜专利网。