[发明专利]一种基于特征相似度的自适应聚类方法及应用有效
| 申请号: | 202010162913.9 | 申请日: | 2020-03-10 |
| 公开(公告)号: | CN111428760B | 公开(公告)日: | 2023-09-08 |
| 发明(设计)人: | 孙红霞;李琛;余学儒;傅豪;田畔 | 申请(专利权)人: | 上海集成电路研发中心有限公司 |
| 主分类号: | G06V10/762 | 分类号: | G06V10/762;G06V10/74;G06V10/764;G06V10/82;G06N3/0455;G06N3/09 |
| 代理公司: | 上海天辰知识产权代理事务所(特殊普通合伙) 31275 | 代理人: | 吴世华;马盼 |
| 地址: | 201210 上*** | 国省代码: | 上海;31 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 特征 相似 自适应 方法 应用 | ||
1.一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,包括如下步骤:
T01:根据白色像素阈值将CMOS图像传感器的测试数据转换为二值图,每个二值图对应为一个样品;当测量数据的累积百分比达到设定的值时,将对应的测量数据作为确定白色像素的阈值;
T02:对样品作图片预处理,筛选出有白色像素分布的样品;
T03:采用基于特征相似度的自适应聚类方法对筛选出的样品进行聚类,得出聚类结果;其中,基于特征相似度的自适应聚类方法,包括:
S01:设置初始深度学习参数,提取样品特征;
S02:设置初始聚类数k以及步长x,以此确定m个聚类数;k、x、m均为大于0的整数;
S03:针对每一个聚类数,对所述样品特征进行聚类,从而得出m组聚类结果;
S04:针对每一组聚类结果,计算其对应的聚类效果函数值f(p),从而得出m个聚类效果函数值;p表示聚类数;
S05:根据最大聚类数对应的聚类效果函数值梯度,确定新的聚类数k’;
S06:重复步骤S03-S05,直至最大聚类数对应的聚类效果函数值梯度小于梯度阈值,记录当前聚类效果函数值f(k’);
S07:调整深度学习参数,重复步骤S02-S06 n次,选择使当前聚类效果函数值f(k’)最大的深度学习参数和聚类数;并得出其对应的聚类结果
T04:根据聚类结果对样品贴标签;
T05:采用有监督学习方法对含有标签的样品进行分类,并结合CMOS图像传感器的制作工艺,分析CMOS图像传感器中白色像素分布的原因。
2.根据权利要求1所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述步骤S01中深度学习参数包括网络深度、训练批次、批处理大小和特征个数。
3.根据权利要求1所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述步骤S01中利用变分自编码器提取样品特征。
4.根据权利要求1所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述步骤S03中采用K均值聚类算法对所述样品特征进行聚类。
5.根据权利要求1所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述步骤S04中聚类效果函数值其中,dpri为第p个聚类数,第r类中,第i个样品点的相似度;thres为相似度阈值;Np为第p个聚类数中的总样本数。
6.根据权利要求5所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述第p个聚类数,第r类中,第i个样品点的相似度基于该样品点的特征与该类簇中心的欧式距离得出。
7.根据权利要求5所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述第p个聚类数,第r类中,第i个样品点的相似度其中,bpri为第p个聚类数,第r类,第i个样品点的特征;cpr为第p个聚类数,第r类的簇中心。
8.根据权利要求1所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述步骤S05中根据最大聚类数对应的聚类效果函数值梯度确定新的聚类数k’和k’-x。
9.根据权利要求8所述的一种采用基于特征相似度的自适应聚类进行白色像素分析的方法,其特征在于,所述步骤S05中新的聚类数k’=k+step,step=(1×sign(g(p)+m×g(p))3;其中,k为初始聚类数,sign为符号函数,g(p)为最大聚类数对应的聚类效果函数值梯度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海集成电路研发中心有限公司,未经上海集成电路研发中心有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010162913.9/1.html,转载请声明来源钻瓜专利网。





