[发明专利]基于残差卷积神经网络的隧道围岩级别智能判定方法在审
申请号: | 202010149083.6 | 申请日: | 2020-03-05 |
公开(公告)号: | CN113112446A | 公开(公告)日: | 2021-07-13 |
发明(设计)人: | 马春驰;杨罡;李天斌 | 申请(专利权)人: | 成都理工大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62;G06N3/04;G06N3/08;G06T5/40;G06T5/00 |
代理公司: | 成都东唐智宏专利代理事务所(普通合伙) 51261 | 代理人: | 罗言刚 |
地址: | 610000 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 卷积 神经网络 隧道 围岩 级别 智能 判定 方法 | ||
1.残差卷积神经网络的隧道围岩级别智能判定方法,其特征在于,包括如下步骤:
步骤一.采集隧道掌子面高分辨率图像数据,构建样本库;
步骤二.从步骤一得到的样本库中随机选取大于70%比例数量的样本作为训练集,剩余的作为测试集,并采用数据增广方法进行样本集的扩充,使其满足后续神经网络训练所需要的样本数量;
步骤三.构建残差深度卷积神经网络,用于学习训练,通过训练不断降低损失函数值并更新网络权重参数,经过多次训练后,得到学习后更新了网络权重参数的神经网络;
所述残差深度卷积神经网络中包括多个顺序连接的残差块,所述残差块的数据处理方式包括直线连接和跳跃连接,所述直线连接为将上一层输出作为本层原始输入逐步进行卷积、归一化、激活处理;所述跳跃连接直接将上一层输出与所述直线连接输出处进行张量元素内容相加;
所述残差块将加和结果直接作为残差块处理结果进行输出;
步骤四.选择需要进行围岩分级的图像,作为卷积神经网络的输入,通过步骤三得到的卷积神经网络的迭代,并应用对应围岩分级训练集训练学习得到的网络权重参数,输出围岩对应级别预测;根据所得到的围岩级别预测,返回隧道掌子面对应的围岩分级评定结果。
2.如权利要求1所述的智能判定方法,其特征在于,所述步骤一中还包括对图像进行预处理的步骤;具体操作步骤如下:
将图像的R、G、B三个像素通道分解成单通道,对三个通道分别进行直方图均衡化,均衡化处理后的结果再进行合成,得到均衡化后的图像。
3.如权利要求1所述的智能判定方法,其特征在于,所述步骤2中数据增广可以引入imutils图像处理包对图像进行处理,具体步骤为:
调用该包的paths.list_images()函数查找从步骤一中得到的样本库的全部图像,并抓取图像路径,罗列所有文件,并将路径保存至变量imagePaths中,抓取图像的路径,将每张图像加载至内存,随后初始化图像处理包中的data和labels数组,循环遍历imagePaths,将原始像素强度调整到范围[0,1]完成图像数据预处理;
然后利用图像处理包cv2模块的imread()接口读入图像数据,并利用resize()接口将图像尺寸修改,利用img_to_array()函数将图片转化成数组,将转换后的数组存入data数组中;
从图像路径中提取类标签并更新标签列表完成多类标签的解析,将标签名添加至图像处理包的labels数组中,导入机器学习库scikit-learn库,使用LabelBinarizer()函数完成labels数组的标签二值化;
从sklearn.model_selection函数中导入train_test_split()函数,将数据集data、标签集labels作为参数传入train_test_split()函数;
将图像数据划分为训练集和测试集并进行数据增广。
4.如权利要求1所述的智能判定方法,其特征在于,所述步骤三中,当前网络层第l层的输出等于正常网络的输出计算公式如下:
a[l]=g(zl+a[l-1])=g(wla[l-1]+b[l]+a[l-1])=g((wl+1)a[l-1]+b[l]);
其中zl表示该层的线性运算结果,wl表示第l层的卷积核,g为激活函数;
残差神经网络中反向传播的误差传播公式如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都理工大学,未经成都理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010149083.6/1.html,转载请声明来源钻瓜专利网。