[发明专利]融合交替乘子迭代的谱寻求子带最小方差超声成像算法在审
申请号: | 202010116443.2 | 申请日: | 2020-02-25 |
公开(公告)号: | CN111208213A | 公开(公告)日: | 2020-05-29 |
发明(设计)人: | 王平;杜婷婷;李锡涛;孔露;王林泓;柳学功;孔美娅;田训;梁家祺;王慧悦 | 申请(专利权)人: | 重庆大学 |
主分类号: | G01N29/44 | 分类号: | G01N29/44;G01N29/46;G01N29/06;A61B8/00 |
代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
地址: | 400044 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 融合 交替 乘子迭代 寻求 最小 方差 超声 成像 算法 | ||
1.一种融合交替乘子迭代的谱寻求子带最小方差超声成像算法,其特征在于:包括以下步骤:
S1:对超声阵元接收的回波信号进行放大、AD转换和延时聚焦处理后,获得超声回波数据;得到延时聚焦处理之后的信号x(k),表示为x(k)=[x1(k),x2(k),...xN(k)],其中N表示超声阵列的阵元个数,k表示为对应采样深度的采样时刻;
S2:建立超声信号的谱寻求模型,将求解超声信号的各频域子带问题转化为求解超声信号经短时傅里叶变换(Short-time Fourier Transform,STFT)后每个时间窗频率系数的最小二乘问题;
S3:引入反映超声信号频域稀疏性的惩罚函数,以消除待估计频率系数和时间窗样本数间的约束,获得改进最小二乘问题的最大后验概率解;
S4:应用交替乘子迭代分步并行求解超声信号谱寻求优化模型的频率系数估计问题,获取超声时域信号的各子带频域信号;
S5:利用时间窗的不重叠特性,对同一阵元的窄带子信号按窗函数滑动顺序进行重构,生成各阵元新的频域信号;
S6:将接收阵列依次划分为一个具有重叠阵元的子阵,然后对相应接收子阵的频域信号进行前后向平滑和对角加载处理,以获得频域的样本协方差矩阵;
S7:根据线性约束最小方差原则,计算得出融合交替乘子迭代的谱寻求子带最小方差波束形成权值;
S8:通过快速傅里叶反变换对所求自适应波束形成权值进行处理,最终合成宽带时域自适应波束形成输出信号。
2.根据权利要求1所述的融合交替乘子迭代的谱寻求子带最小方差超声成像算法,其特征在于:在步骤S2中,建立超声信号的谱寻求模型,将求解超声信号的各频域子带问题转化为求解超声信号经STFT后每个时间窗频率系数的最小二乘问题,具体包括以下步骤:
S21:通过建立超声信号的谱寻求模型,将求解超声信号x(k)的各频域子带问题转化为求解已观测的超声信号时间序列x∈RT经STFT后每个时间窗频率系数ω∈RK×W的最小二乘问题,其中R为实数集,∈为集合属于符号,RT表示长度为T的一维实数集,RK×W表示K行,W列的二维实数集,K为每个时间窗频率系数的数量,T为超声信号时间序列x的长度,W为时间序列x中长度为M的时间窗数量,等同于划分频率子带的数目,并且T=M×W;超声信号的第j个时间窗数据xj表示为:
xj=Fjωj+vj
其中,xj∈RM,RM表示长度为M的一维实数集;ωj∈RK是第j个时间窗的频率系数的集合,RK表示长度为K的一维实数集;vj~N(0,σ2),vj表示随机高斯噪声,其定义式表示vj满足均值为0,方差为σ2的正态分布;Fj∈RM×K为逆实数傅里叶基矩阵,其元素表示为:其中,各下标定义为j=1,2,...,W,k=1,2,...,K/2,m=1,2,...,M;此外,定义的谱寻求模型中存在频率系数与时间窗样本数K≤M的约束条件;
S22:使用统计学方法,把谱寻求模型的目标问题转化成以下l2范数优化问题:
其中,表示使目标函数取得最小值的求解变量ω的函数,表示向量的l2范数的求平方运算,∑·表示求和运算;通过求解上述最小二乘问题,得到超声信号时间序列x的离散时间傅里叶变换的闭式解,从概率角度得到原问题的最大似然估计解
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010116443.2/1.html,转载请声明来源钻瓜专利网。