[发明专利]视频封面确定模型的生成方法及装置、视频封面确定方法及装置在审
| 申请号: | 202010112972.5 | 申请日: | 2020-02-24 |
| 公开(公告)号: | CN111274444A | 公开(公告)日: | 2020-06-12 |
| 发明(设计)人: | 刘畅;李岩 | 申请(专利权)人: | 北京达佳互联信息技术有限公司 |
| 主分类号: | G06F16/738 | 分类号: | G06F16/738 |
| 代理公司: | 广州华进联合专利商标代理有限公司 44224 | 代理人: | 李姣姣 |
| 地址: | 100085 北京市海淀*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 视频 封面 确定 模型 生成 方法 装置 | ||
本公开关于一种视频封面确定模型的生成方法及装置、视频封面确定方法及装置。包括:获取第一目标视频集;根据第一目标视频,获取正样本和负样本;根据正样本和负样本,对预设的初始视频封面确定模型进行训练,得到第一目标图像为封面的预测分数和用于衡量正样本与负样本参与训练权重的评价分数;将满足第二预设条件的预测分数且满足第三预设条件的评价分数,对应的初始视频封面确定模型,确定为视频封面确定模型。整个过程中,无需人工介入,更不涉及相关人员的专业程度,节省大量人力物力,并且得到的视频封面确定模型可以适用于不同的视频内容,具有较强的泛化能力。
技术领域
本公开涉及视频处理技术领域,尤其涉及一种视频封面确定模型的生成方法及装置、视频封面确定方法及装置。
背景技术
随着现代信息传输技术的快速进步和智能手机等视频拍摄设备的普及,人们通过创作视频来分享生活的热情得到了前所未有的发展,短视频逐渐成为了人们日常接受信息的主要载体之一。视频封面作为用户最先看到的信息,极大程度地决定了相关视频是否会被用户观看,因此,选择高质量的视频封面有助于提升用户体验,帮助视频分享和推广。传统技术中,通常是通过深度学习的方法,对提取到的视频帧的特征进行美学程度和相关性检测,从而选取视频封面。
然而,传统技术中,采用深度的方法需要人工对视频帧的特征进行设计和标注,消耗的人力物力都比较大,并且高度依赖对视频帧的特征进行设计和标注的人员的专业程度。
发明内容
本公开提供一种视频封面确定模型的生成方法及装置、视频封面确定方法及装置,以至少解决相关技术中高度依赖人工进行视频封面确定的问题。本公开的技术方案如下:
根据本公开实施例的第一方面,提供一种视频封面确定模型的生成方法,包括:
获取第一目标视频集;其中,所述第一目标视频集包括至少一个第一目标视频;
根据所述第一目标视频,获取正样本和负样本;其中,所述正样本为所述第一目标视频对应的初始视频封面,所述负样本为图像特征满足第一预设条件的图像帧;
根据所述正样本和所述负样本,对预设的初始视频封面确定模型进行训练,并得到所述第一目标图像为封面的预测分数和用于衡量所述正样本与所述负样本参与训练权重的评价分数;
将满足第二预设条件的预测分数且满足第三预设条件的评价分数,对应的初始视频封面确定模型,确定为视频封面确定模型。
在一示例性实施例中,所述根据所述第一目标视频,获取正样本和负样本,包括:
对于每一所述第一目标视频,获取所述第一目标视频的初始视频封面,并将所述初始视频封面确定为正样本;
按照第一预设规则,从所述第一目标视频中抽取至少一个图像帧,得到第一目标图像集;
根据所述第一目标图像的图像特征,对所述第一目标图像的属性进行检测,得到图像属性检测结果;
根据每一所述图像属性检测结果、每一所述第一目标图像的图像特征与所述正样本的图像特征之间的距离,得到所述负样本。
在一示例性实施例中,所述根据每一所述图像属性检测结果、每一所述第一目标图像的图像特征与所述正样本的图像特征之间的距离,得到所述负样本,包括:
将所述图像属性检测结果为非正常图像的第一目标图像,确定为第一负样本;
将所述第一目标图像的图像特征与所述正样本的图像特征之间的距离最大的第一目标图像,确定为第二负样本;
将所述第一负样本和所述第二负样本确定为所述负样本。
在一示例性实施例中,所述初始视频封面确定模型包括初始得分网络模型和初始评价网络模型;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京达佳互联信息技术有限公司,未经北京达佳互联信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010112972.5/2.html,转载请声明来源钻瓜专利网。





