[发明专利]基于硬件环境的数据量化方法、装置及可读存储介质有效
申请号: | 202010071063.1 | 申请日: | 2020-01-21 |
公开(公告)号: | CN111240640B | 公开(公告)日: | 2022-05-10 |
发明(设计)人: | 曹其春;赵雅倩;董刚;梁玲燕;尹文枫 | 申请(专利权)人: | 苏州浪潮智能科技有限公司 |
主分类号: | G06F8/10 | 分类号: | G06F8/10;G06N20/00 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 刘新雷 |
地址: | 215100 江苏省苏州市吴*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 硬件 环境 数据 量化 方法 装置 可读 存储 介质 | ||
1.一种基于硬件环境的数据量化方法,其特征在于,包括:
根据当前深度学习框架下的模型文件解析得到与硬件环境无关的中间计算图数据和权重数据;
基于所述中间计算图数据和所述权重数据,对输入数据集中的图像数据经中间计算图流程计算得到特征图数据;
分别按照预先设置的线性量化方法对所述权重数据和每层特征图数据进行均匀量化,并计算得到权重量化因子和特征图量化因子;
将所述权重量化因子和所述特征图量化因子进行合并,得到量化参数,所述量化参数为使硬件使用移位代替除法的参数;
按照硬件需求将所述量化参数和量化后的权重数据写入至bin文件,生成量化后文件数据;
其中,所述将所述权重量化因子和所述特征图量化因子进行合并为:
根据量化因子合并计算关系式将所述权重量化因子和所述特征图量化因子进行合并,所述量化因子合并计算关系式为:
;
式中,
所述分别按照预先设置的线性量化方法对所述权重数据和每层特征图数据进行均匀量化,并计算得到权重量化因子和特征图量化因子包括:
计算每层特征图数据的平均值,以作为每层特征图平均数据;
统计所述权重数据和每层特征图平均数据的数据分布,并计算相应的限定值;
将所述权重数据和每层特征图平均数据限定在相应限定范围内,所述限定范围根据相应限定值确定;
将限定后的数据平均量化至int8数据精度的-127 ~ +127之间,计算得到权重量化因子和特征图量化因子;
所述计算相应的限定值包括:
所述权重数据的权重限定值根据权重限定值计算关系式计算得到,所述权重限定值计算关系式为
所述每层特征图平均数据的特征图限定值根据特征图限定值计算关系式计算得到,所述特征图限定值计算关系式为
2.根据权利要求1所述的基于硬件环境的数据量化方法,其特征在于,所述按照硬件需求将所述量化参数和量化后的权重数据写入至bin文件之前,还包括:
对所述量化参数和量化后的权重数据进行重排序,以使所述量化参数和量化后的权重数据的数据格式为64通道并行格式。
3.根据权利要求2所述的基于硬件环境的数据量化方法,其特征在于,所述解析得到当前深度学习框架的中间计算图数据和权重数据包括:
利用NNVM编译器中的NNVM组件解析所述模型文件得到所述中间计算图数据;
利用所述NNVM编译器中的TVM组件执行中间计算图的操作运算符并计算得到张量形式的权重数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州浪潮智能科技有限公司,未经苏州浪潮智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010071063.1/1.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置