[发明专利]一种基于滤波器的点云属性预测方法及设备在审

专利信息
申请号: 202010034025.9 申请日: 2020-01-13
公开(公告)号: CN111242997A 公开(公告)日: 2020-06-05
发明(设计)人: 李革;马闯;王静;邵薏婷 申请(专利权)人: 北京大学深圳研究生院
主分类号: G06T7/521 分类号: G06T7/521
代理公司: 北京京万通知识产权代理有限公司 11440 代理人: 万学堂
地址: 518055 广东省深圳市南*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 滤波器 属性 预测 方法 设备
【说明书】:

发明提供了一种点云的属性预测方法及预测设备,包括编码和解码的方法、编码设备和解码设备。该方法包括:确定当前点的K个最近邻点;确定滤波器矩阵;根据所述滤波器矩阵确定所述当前点的属性预测值。由此,能够通过选取合适的滤波器,提高了点云属性的压缩性能。

技术领域

本发明涉及点云处理领域,尤其涉及一种基于滤波器的点云属性预测方法及设备。

背景技术

三维点云是现实世界数字化的重要表现形式。随着三维扫描设备(激光、雷达等)的快速发展,点云的精度、分辨率更高。高精度点云广泛应用于城市数字化地图的构建,在如智慧城市、无人驾驶、文物保护等众多热门研究中起技术支撑作用。点云是三维扫描设备对物体表面采样所获取的,一帧点云的点数一般是百万级别,其中每个点包含几何信息和颜色、反射率等属性信息,数据量十分庞大。三维点云庞大的数据量给数据存储、传输等带来巨大挑战,所以点云压缩十分必要。

点云压缩主要分为几何压缩和属性压缩,目前由国际标准组织(Moving PictureExperts Group,MPEG)所提供的测试平台TMC13v8(Test Model for Category 13version8)中描述的点云属性压缩框架主要有:

一、基于渐近层次表达(Level of Detail,简称为LOD)的升降变换(LiftingTransform)策略:该方法首先用已按照莫顿码排序的点云构建LOD,即根据预设好的LOD层数,对已经排好序的点进行下采样,每采样一次后已经得到的点构成一层LOD,采样距离由大到小,直至整个LOD构建完成。然后以LOD顺序对点云中的点寻找近邻点,以所有近邻点属性值的加权平均作为属性预测值,其中每个近邻点的权重是当前点与该当前点的近邻点的几何坐标欧氏距离平方的倒数,最后用当前点的实际属性值减去属性预测值得到属性残差值。

二、基于LOD的预测变换(Predicting Transform)策略:本方法构建LOD的过程同上面,构建完LOD之后,按照K最近邻(K-NearestNeighbor,KNN)算法为每一个点寻找最多K个最近邻点,则共有K+1种预测模式,分别是:以第一个、第二个、……、第K个最近邻点的属性值作为预测参考值,以及以K个最近邻点的属性加权平均值作为预测参考值,其中每个最近邻点的权重是当前点与该当前点的最近邻点的几何坐标欧氏距离平方的倒数,然后对此K+1个预测参考值及对应模式计算率失真优化(RDO)代价值,将其中最小代价值的对应属性预测值作为当前点的属性预测值。

同时也有目前由中国AVS(Audio Video coding Standard)点云压缩工作组所提供的测试平台PCEM v0.1中描述的点云属性压缩方法主要采用基于莫顿顺序的点云预测方法,即将当前点云按照点云的位置信息进行莫顿排序,选取当前点莫顿顺序的前一个点的属性值作为当前点的属性预测值,最后用当前点的实际属性值减去属性预测值得到属性残差值。

但是,以上相关技术在找到邻点之后进行属性预测,没有考虑到邻点之间的点与点之前的位置关系,原始技术只是考虑到了邻居点与当前点的位置关系,所以我们提出了一种滤波器,不仅考虑到了邻居点与当前点的位置关系,也加入了邻点之间的点与点之前的位置关系。对于传统规则的二维图像压缩而言,其参考点一般是左上的像素点,利用已经编码好的某个像素值或者某个像素值的平均来做预测,但考虑到点云中点的分布是不规律且无序的,当pred模式选取最近邻居点的时候,我们无法保证在KNN选取最近点的时候,所有的邻居点都均匀的分布在当前点的周围(理想情况,如图1右图)。

如图1左图所示,当在这种情况下,利用average模式进行预测的时候,P1与P2点之前的属性相近,在利用空间距离进行加权求和得到预测值的时候,这两个点会占据主导的预测值,从而削弱了P1点的属性对当前点的影响,即当前点的预测值比较接近于P2与P3的值,而这样就没有充分利用各个邻居点的属性值来提高预测的准确性。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学深圳研究生院,未经北京大学深圳研究生院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010034025.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top