[发明专利]一种车速时间序列分频预测方法有效
| 申请号: | 202010024509.5 | 申请日: | 2020-01-10 |
| 公开(公告)号: | CN111275244B | 公开(公告)日: | 2023-07-25 |
| 发明(设计)人: | 周健豪;郑康诚;顾诚;宋廷伦;廖宇辉;刘军;孙静 | 申请(专利权)人: | 南京航空航天大学 |
| 主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/0442;G06N3/045;G06N3/08 |
| 代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 秦秋星 |
| 地址: | 210016 江*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 车速 时间 序列 分频 预测 方法 | ||
1.一种车速时间序列分频预测方法,其特征在于,包括以下步骤:
步骤一、采集车辆历史实测车速数据,建立原始车速时间序列;
步骤二、将原始车速时间序列按频率高低分解为若干个子层;
步骤三、建立EWT-LSTM-IEWT预测模型,以步骤二得到的频率最高的子层中的数据构建样本集进行训练,对频率最高的子层分解、预测和重构;
步骤四、构建一个LSTM网络,以步骤二得到的频率仅次于最高频的子层中的数据构建样本集进行训练,对频率仅次于最高频的子层进行车速预测;
步骤五、以步骤二得到的其余低频子层中的数据构建样本集训练出核函数极限学习机,对其余的低频子层进行车速预测;
步骤六、再次建立一个LSTM网络,用步骤三的最高频子层训练集得到的EWT-LSTM-IEWT模型预测误差构建一个误差训练集进行训练,对最高频子层的预测误差进行预测,再将误差的预测值和最高频子层的预测值叠加,得到最终的最高频分量预测值;
步骤七、对步骤四、五和六得到的所有子层的预测车速进行逆经验小波变换,进而得到最终的车速预测结果;
在步骤三中构建EWT-LSTM-IEWT预测模型对频率最高的子层进行多次分解,并设置分解层数i,i≥1,包括以下步骤:
步骤301:将最高频子层进行经验小波变换,得到t个分量;
步骤302:利用步骤301得到的各分量构建t个样本训练集训练t个长短期记忆神经网络,对步骤301分解得到的t个分量进行预测;
步骤303:根据步骤302得到的最高频分量预测结果计算出的平均绝对百分比误差判断是否需要继续分解,如平均绝对百分比误差大于阈值就需要继续分解执行步骤304,否则达到最大分解次数或者平均绝对百分比误差小于阈值就执行步骤305;
步骤304:将步骤301得到t个分量中的最高频分量进行经验小波变换,也就是重复步骤301-303,最多可重复i次;
步骤305:当不需要再次分解或者达到最大分解次数,将结束分解时的第m次分解的预测结果进行逆经验小波变换,1≤m≤i,得到第m次分解前的分量的预测值,再将此预测值返回给第m-1次分解时的预测模型进行逆经验小波变换,得到第m-1次分解前的分量的预测值,以此类推,最终得到第1次分解时的分量的预测值,也就是步骤二得到的最高频子层的预测值;
步骤六中建立的LSTM网络可根据步骤三的最高频子层训练集得到EWT-LSTM-IEWT模型预测误差构建的误差训练集进行训练,然后对最高频子层的预测误差进行预测,再将误差的预测值和最高频子层的预测值叠加,得到最终的最高频分量预测值。
2.如权利要求1所述的一种车速时间序列分频预测方法,其特征在于,步骤二和三中,采用经验小波将原始车速时间序列分解为若干个子层,包括如下步骤:
设置分解层数N,其计算定义如下:
计算原始车速时间序列f(t)的傅里叶频谱f(ω),并假定傅里叶支撑区间[0,π]被分割为N个连续区段,即每个区段为[ωn-1,ωn](n=1,…,N);检测车速时间序列的傅里叶谱的局部极大值,并将两个相邻局部极大值的中心位置定义为连续部分的边界ωn;尺度函数的傅里叶频谱和经验小波的傅里叶频谱分别定义如下:
式中β(x)为在[0,1]区间满足K阶导任意函数,γ为参数,两者可表示为
原始车速时间序列f(t)的经验小波变换的细节系数为:
逼近系数为:
式中f(t)表示原始车速时间序列,和φn(t)表示f(t)的小波函数和尺度函数,F-1[·]表示Fourier逆变换,分别表示的共轭;
小波分解得到的低频分量f0(t)和高频分量fn(t)分别为:
其中,*表示函数的卷积运算。
3.如权利要求1所述的一种车速时间序列分频预测方法,其特征在于,步骤四中,长短期记忆神经网络的计算定义如下:
it=σ(Wixxt+Wimmt-1+Wicct-1+bi)
ft=σ(Wixxt+Wfmmt-1+Wfcct-1+bf)
ot=σ(Woxxt+Wommt-1+Wocct+bo)
yt=Wymmt+by
式中,xt表示平坦化层数;it、ft、ct、ot分别表示输入门、忘记门、存储单元向量和输出门;Wix、Wim、Wic、Wfx、Wfm、Wfc、Wcx、Wcm、Wox、Wom、Woc、Wym表示权重;mt表示存储块;表示标量积;bi、bf、bc、bo、by表示偏置;yt表示最终输出;σ(·)和tanh(·)是两个激活函数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010024509.5/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理





