[发明专利]一种基于卷积神经网络的电力操作票文字识别方法有效
| 申请号: | 202010022127.9 | 申请日: | 2020-01-09 |
| 公开(公告)号: | CN111259880B | 公开(公告)日: | 2022-11-18 |
| 发明(设计)人: | 罗麟;位一鸣;苗晓君;张引贤;熊安 | 申请(专利权)人: | 国网浙江省电力有限公司舟山供电公司 |
| 主分类号: | G06V30/18 | 分类号: | G06V30/18;G06V10/82;G06V10/774;G06N3/04 |
| 代理公司: | 浙江翔隆专利事务所(普通合伙) 33206 | 代理人: | 王晓燕 |
| 地址: | 316021 浙江省*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 卷积 神经网络 电力 操作 文字 识别 方法 | ||
1.一种基于卷积神经网络的电力操作票文字识别方法,其特征在于包括以下步骤:
1)获取样本图像,得到训练集;
2)构建仅具有3层卷积层,无池化层,无全连接层的卷积神经网络模型C0;
3)定义C0的损失函数;
4)训练得到非线性映射函数Fλ(p),遍历训练集c中所有样本图像,训练输出图像增强计算函数,即非线性映射函数Fλ(p);
5)基于非线性映射函数Fλ(p),计算输出图像p的高峰值信噪比图像;
6)使用笔迹特征计算方法,计算高峰值信噪比图像的假想笔画特征、路径签名特征与8方向特征;
7)构建具有6层卷积层、5层池化层和1层全连接层的集成卷积神经网络模型C1;
8)遍历训练集中所有样本图像,结合假想笔画特征、路径签名特征与8个方向特征,训练得到电力操作票文字识别模型;
9)获取需要识别的电力操作票,通过电力操作票文字识别模型进行文字识别。
2.根据权利要求1所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤1)中,针对样本图像pi(pi∈c,1≤i≤N)得到训练集,其中N是训练集c包含的样本图像总数,获取pi的M×M数值矩阵Ai,及其对应的清晰图像数值矩阵Bi。
3.根据权利要求2所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤2)中构建三层卷积神经网络模型C0,仅含卷积层,选择激活函数ReLU,步长设置为1,不对卷积运算填充0,网络结构为:
4.根据权利要求3所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤3)中定义损失函数,损失函数目的是获得最小F范数,计算公式如下:
其中λ={Wj,bj};其中为卷积网络第j层的卷积矩阵,bj为偏差值,nj为卷积网络第j层的卷积核个数。
5.根据权利要求4所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤5)中使用非线性映射函数Fλ(p),计算训练集c中每一个样本图像pi对应的增强图像Pi,得到新训练集C(Pi∈C,1≤i≤N)。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网浙江省电力有限公司舟山供电公司,未经国网浙江省电力有限公司舟山供电公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010022127.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种烫发机智能控制系统
- 下一篇:一种人员网格化服务管理平台





