[发明专利]一种基于机器学习的个性化超促排卵方案的预测装置有效
申请号: | 201911337735.2 | 申请日: | 2019-12-23 |
公开(公告)号: | CN111145912B | 公开(公告)日: | 2023-04-18 |
发明(设计)人: | 吴健;陈晋泰;陈婷婷;冯芮苇;应豪超;雷璧闻;刘雪晨;宋庆宇;曹燕 | 申请(专利权)人: | 浙江大学 |
主分类号: | G16H50/70 | 分类号: | G16H50/70;G16H50/50;G16H10/60;G06N20/00;G06F18/214;A61B10/00 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 胡红娟 |
地址: | 310013 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 机器 学习 个性化 排卵 方案 预测 装置 | ||
1.一种基于机器学习的个性化超促排卵方案的预测装置,包括计算机存储器、计算机处理器以及存储在所述计算机存储器中并可在所述计算机处理器上执行的计算机程序,其特征在于:
所述的计算机存储器中存有超促排卵方案预测模型,所述的超促排卵方案预测模型包括训练好的初级学习器和次级学习器;其中,初级学习器由SVM模型、ExtraTrees模型、RandomForest模型、LightGBM模型和XGboost模型组成,所述的次级学习器采用Catboost模型;所述的初级学习器和次级学习器训练过程如下:
对采取过超促排卵治疗进行辅助生殖的患者,采集其从入院至通过超促排卵治疗后获得治疗结果为止,中间所有的临床特征数据;根据专业医生对所有患者记录进行判断,确定获卵个数和质量达到要求的患者,并将其临床特征数据和所采取的超促排卵方案纳入样本数据;对样本依据超促排卵方案进行分类标注,采取长方案的样本标记为0,短方案标记为1,超长方案标记为2,拮抗剂方案标记为3,超短方案标记为4,微刺激方案标记为5,构成训练集;
将训练集中的临床特征数据进行特征工程处理后分别输入到初级学习器的SVM模型、ExtraTrees模型、RandomForest模型、LightGBM模型、XGboost模型,分别获得一个预测值,这5个预测值作为次级学习器的Catboost模型的输入,计算获得最终的预测值;每个模型根据其预测值与样本的标签值计算交叉熵损失函数,从而根据损失函数更新模型参数;
所述计算机处理器执行所述计算机程序时实现以下步骤:
将待测的临床特征数据进行特征工程处理,包括异常值处理、缺失值处理,以及特征组合计算;
将处理后的临床特征数据输入初级学习器进行计算,获得五个模型的预测值;
采用训练好的次级学习器对5个预测值进行计算,获得最终预测结果。
2.根据权利要求1所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,采用过采样法和交叉验证法训练超促排卵方案预测模型。
3.根据权利要求2所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,采用交叉验证法训练超促排卵方案预测模型时,对初级学习器中的SVM模型、ExtraTrees模型、RandomForest模型、LightGBM模型和XGboost模型,采用5折交叉验证进行训练;训练结束后,每种模型产生5个模型,初级学习器生成25个模型。
4.根据权利要求1所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,模型训练过程中,初级学习器中每个模型通过计算得到每个特征对超促排卵方案预测模型的重要性排序,对每个模型的特征重要性排序结果进行平均,获得最终的特征重要性排序。
5.根据权利要求1所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,所述的超促排卵方案预测模型在线下训练完成,然后存储在预测装置中;
或在线上训练完成,且每次应用时接收的待预测的临床特征数据经特征工程后作为训练样本,对预测模型做优化更新。
6.根据权利要求1所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,所述的异常值处理具体为:将超出医学范围的特征数据处理为空值。
7.根据权利要求1所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,所述的缺失值处理具体为:对于连续的特征缺失数据,采用平均值填充、中位数填充、众数填充、最近邻填充方法;对于离散的特征缺失数据,采用众数填充、最近邻填充方法。
8.根据权利要求1所述的基于机器学习的个性化超促排卵方案的预测装置,其特征在于,所述的特征组合计算具体为:
将身高和体重两个数据组合为一个新的特征指数,将基础卵泡刺激素和黄体生成素两个数据组合为一个新的特征指数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911337735.2/1.html,转载请声明来源钻瓜专利网。