[发明专利]深度可分离卷积和批规范化融合的方法在审
申请号: | 201911321112.6 | 申请日: | 2019-12-20 |
公开(公告)号: | CN111027685A | 公开(公告)日: | 2020-04-17 |
发明(设计)人: | 范益波;刘超 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 上海正旦专利代理有限公司 31200 | 代理人: | 陆飞;陆尤 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 深度 可分离 卷积 规范化 融合 方法 | ||
1.一致深度可分离卷积和批规范化融合的方法,其特征在于,从训练好的含有深度可分离卷积和批规范化层的神经网络模型,导出的Pointwise卷积的参数和批规范化的参数,通过特别设计的计方法,重新计算出一组新的参数,用于对Pointwise卷积的权重和偏置进行赋值,修改Pointwise卷积的权重和偏置;然后删除掉原先网络结构中的批规范化层的效果,将批规范化层的计算添加在在Pointwise卷积中,得到与深度可分离卷积和批规范化等效的深度可分离卷积层,实现卷积融合批规范化的效果;具体步骤如下:
(1)对于训练好的含有深度可分离卷积和批规范化层的神经网络模型,要求在深度可分离卷积和批规范化层之间没有非线性激活函数,首先导出深度可分离卷积的Pointwise卷积的权重wpwConv和偏置项bpwConv,以及批规范化层的参数γ、β、mean和var;其中γ、β为批规范化层的学习参数,mean和var为批规范化层的计算参数;
(2)按如下式子计算新的Pointwise卷积参数:
其中,∈表示的是一个防止出现除0的超参,*表示的是卷积计算;
(3)将和取代原有的Pointwise卷积的权重wpwConv和偏置项bpwConv,并删除原网络中的批规范化层,得到新的神经网络结构和对应的权重;至此,深度可分离卷积和批规范化融合完成;用ydwConv表示Depthwise卷积的输出,ybn表示批规范化的输出,这样就直接连接到ydwConv和ybn:
(4)在得到新的网络结构之后,使用新的网络结构来取代原有的网络结构,从而实现简化计算量的效果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911321112.6/1.html,转载请声明来源钻瓜专利网。