[发明专利]一种基于PI控制策略的机械臂柔性关节位姿变换抑振方法有效

专利信息
申请号: 201911204536.4 申请日: 2019-11-29
公开(公告)号: CN110802602B 公开(公告)日: 2023-01-10
发明(设计)人: 李小彭;轩诗雨;尚东阳 申请(专利权)人: 东北大学
主分类号: B25J9/16 分类号: B25J9/16
代理公司: 北京易捷胜知识产权代理有限公司 11613 代理人: 韩国胜
地址: 110169 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 pi 控制 策略 机械 柔性 关节 变换 方法
【权利要求书】:

1.一种基于PI控制策略的机械臂柔性关节位姿变换抑振方法,其特征在于,

建立机械臂的柔性关节伺服系统动力学模型,将变参数PI控制策略应用于机械臂的柔性关节伺服系统动力学模型的速度控制中;

其中,变参数PI控制策略的参数根据机械臂柔性关节电机端、负载端的转动惯量随位姿变化来进行调整;

其中,机械臂的柔性关节伺服系统动力学模型的方程表达式为:

式中:Jm表示电机转动惯量,θm表示电机转角,Jl表示负载转动惯量,θl表示负载转角,Tm表示电机电磁转矩,ωm表示电机角速度,Tl表示负载转矩,ωl表示负载角速度,Ks为传动系统扭转刚度,Ts表示轴矩;

所述机械臂柔性关节电机端的转动惯量的方程表达式为:

式中,q为关节广义位移,τi为关节i的广义力;

Mij为关节i和关节j之间的耦合量系数;

Dijk为关节之间的向心力项、哥氏力项系数;

Gi为关节i处重力项系数;

M(q)是n×n的正定对称矩阵,称为操作臂的惯性矩阵;是n×1的离心力和哥氏力向量;G(q)是n×1的重力矢量;

其中,Mij的表达式为:

式中TP表示机器人的连杆变换矩阵;

变参数PI控制策略具有以下关系式成立:

KP=Jm(2ξa1ωa1+2ξb1ωb1)

式中:KP、KI分别为PI调节器比例参数、积分参数,ωa1、ωb1表示极点的自然频率;ξa1、ξb1表示极点阻尼系数;

采用PI调节器时系统的闭环传递函数如下式所示:

式中KP、KI分别为PI调节器比例参数、积分参数,ωl(s)表示负载转数的传递函数,ωa表示极点自然频率,s表示拉普拉斯变换。

2.根据权利要求1所述的抑振方法,其特征在于,

采用相同幅值的极点配置法时,机械臂的柔性关节伺服系统动力学模型的闭环传递函数的零点如下式:

ξa1、ξb1取值决定了系统的最大超调量、峰值时间、调整时间;

KP、KI分别为PI调节器比例参数,z1、z2、z3表示零点的取值,ωa表示极点自然频率,j表示虚部,ξa1、ξb1表示极点阻尼系数。

3.根据权利要求1所述的抑振方法,其特征在于,

采用相同阻尼系数的极点配置法时,机械臂的柔性关节伺服系统动力学模型的闭环传递函数的零点如下式:

ξ1、ωb1a1取值决定了系统的最大超调量、峰值时间、调整时间;

KP、KI分别为PI调节器比例参数,z1、z2、z3表示零点的取值,ωa表示极点自然频率,j表示虚部,ξ1表示极点配置的阻尼系数,R表示阻尼比。

4.根据权利要求 1所述的抑振方法,其特征在于,

采用相同实部的极点配置法时,机械臂的柔性关节伺服系统动力学模型的闭环传递函数的零点如下式:

ξa1、ωb1a1取值决定了系统的最大超调量、峰值时间、调整时间;

KP、KI分别为PI调节器比例参数,z1、z2、z3表示零点的取值,ωa表示极点自然频率,j表示虚部,ξa1表示极点阻尼系数,R表示阻尼比,A、B表示分子分母。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911204536.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top