[发明专利]基于余代数模态逻辑的系统状态空间约简方法在审
申请号: | 201911190791.8 | 申请日: | 2019-11-28 |
公开(公告)号: | CN110956267A | 公开(公告)日: | 2020-04-03 |
发明(设计)人: | 陈志远 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | G06N5/04 | 分类号: | G06N5/04 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 数模 逻辑 系统 状态 空间 方法 | ||
本发明属于余代数以及模态逻辑领域,具体涉及在模型检测问题中的一种基于余代数模态逻辑的系统状态空间约简方法。方法包括如下步骤:任意给定克里普克结构K,K~K′;任意给定待验证系统的迁移系统TS或自动机A表示,A~A′;寻找系统的最小的克里普克结构结构模型;迁移系统并发交错执行过程中有许多相互独立的迁移序列。本方法不仅可以将这些相互独立的本质相同的迁移序列,通过一个互模拟等价的迁移序列来代替,从而减少系统中本质上相同的状态。而且针对由多个完全对称的进程并发运行的系统,用该方法得到的压缩后的状态空间等价于原始模型。使得模型检测器在验证过程中搜索更小的状态空间,进一步提高搜索效率。
技术领域
本发明属于余代数以及模态逻辑领域,具体涉及在模型检测问题中的一种基于余代数模态逻辑的系统状态空间约简方法。
背景技术
模态逻辑随着克里普克可能世界语义学的提出而得到了全新的发展,在计算机科学领域有着日益广泛的应用。动态迁移系统是计算机软硬件系统的有效刻画形式,余代数理论又是描述动态迁移系统的重要工具。将余代数与模态逻辑结合起来是近年来理论计算机科学研究的一个热点问题。本发明的主要基于互模拟理论,研究了模态逻辑的克里普克语义学与余代数的关系,通过基于余代数方法得到系统抽象模型的最小的克里普克结构表示形式,从理论上证明了其存在性。从而将模型检测问题约束在一个最小的克里普克结构上进行,从而达到了约简状态空间的目的,避免状态空间爆炸问题。
模型检测的核心内容是如何有效地避免状态空间爆炸问题,而系统的状态空间直接影响模型检测的效率,如何通过一种有效的方法来缩减系统的抽象模型,减少其状态数,并且使得状态缩减后的模型与原始模型在行为上等价是模型检测领域一个重要的研究课题。
逻辑模态符号体系的联接词分别为:(否定联结词)、∧(合取联结词)、∨(析取联结词)、→(蕴含联结词)和(等价联结词),两个模态算子:□(读作:必然)和◇(读作:可能)。其它运算符定义如下:
模态逻辑的公理集有A1,A2,A3,M,C,N,K,D,Y,4,5,B,G,H,W,McK,Lem,Dum等公理。
模态逻辑的推理规则集:MP称为分离规则;US称为代入规则;RN称为必然化规则(Rule of Necessitation);RM称为单调规则(Rule of Monotonicity);RE称为等价规则(Rule of Equivalence);RR称为正则规则(Rule of Regular);RK称为正规规则(Rule ofKripke);RER称为等价置换规则(Rule of Equivalence Replacement)。
克里普克语义学模型定义为:
定义给定一个原子公式集Ω,模型为一个三元组M=<W,R,V>,其中
W为一非空集合;
R为W上的二元关系,即
V:Ω→P(W)是一个函数,P(W)为W的幂集。
以上内容,M表示模型,WM表示模型M中的世界,RM表示模型中的关系,VM表示模型中的函数。
模态逻辑系统K是一个最特殊的模态逻辑系统,它仅包含K公理、MP规则和RN规则,是最小的正规模态逻辑系统。
迁移系统的形式化定义如下。
定义一个迁移系统TS是是五元组TS=<S,Act,I,→,AP,L>,其中:
S是状态集合;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911190791.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种数据写入方法及装置
- 下一篇:一种基于图像移动的简单验证方法