[发明专利]一种基于卷积神经网络的室内单目场景深度估计的方法有效

专利信息
申请号: 201911073281.2 申请日: 2019-11-05
公开(公告)号: CN110992414B 公开(公告)日: 2023-06-30
发明(设计)人: 梁煜;张金铭;张为 申请(专利权)人: 天津大学
主分类号: G06T7/50 分类号: G06T7/50
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 程毓英
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 卷积 神经网络 室内 场景 深度 估计 方法
【权利要求书】:

1.一种基于卷积神经网络的室内场景深度估计的方法,包括下列步骤:

第一步,构建带有标注和标签的图片数据库:挑选室内场景的图片,并对其进行标注,构建符合格式要求、匹配网络结构的数据集;

第二步,训练一个深度卷积神经网络:利用所得的数据集,利用全卷积通道注意力网络和全卷积残差网络的基本原理,设计一种网络结构,采用编码器解码器架构,将改进的注意力模块放入编码器中,将改进的上采样模块放入解码器中,从而得到最佳的精度;方法如下:

(1) 训练编码器时,编码器由卷积层和FCSE1,FCSE2,FCSE3和FCSE4四个块构成,结构设计为下采样卷积层1,由2个注意力模块叠加形成的FCSE1,下采样卷积层2,由3个注意力模块叠加形成的FCSE2,下采样卷积层3,由4个注意力模块叠加形成的FCSE3,下采样卷积层4,由1个注意力模块叠加形成的FCSE4;首先对注意力通道网络进行修改,修改后的四个FCSE块用来提取图像特征,用卷积层代替其中的全连接层,实现段对端的训练;卷积层中卷积核的尺寸是3×3、步长为1;

(2)训练解码器时,解码器主要由上采样模块构成,包含上采样模块1、上采样模块2、上采样模块3、上采样模块4,将编码器提取的特征信息映射成深度信息;上采样模块1有两个连续的卷积层用于残差计算,特征信道变为原来的一倍,上采样模块2以因数4进行上采样,有四个连续的卷积层用于残差计算,将特征图的长和宽增加4倍,特征信道变为原来的四分之一,上采样模块3、上采样模块4同理;

第三步,使用L1损失函数对网络模型进行优化,采用L1损失函数,训练网络的特征选择的能力而且网络更容易收敛,将编码器和解码器组合为一个端到端的卷积神经网络,从而构成一个深度估计模型;

第四步,图像深度估计。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911073281.2/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top