[发明专利]一种多尺度SAR图像边缘检测方法在审
申请号: | 201910981758.0 | 申请日: | 2019-10-16 |
公开(公告)号: | CN110782471A | 公开(公告)日: | 2020-02-11 |
发明(设计)人: | 郎丰铠 | 申请(专利权)人: | 中国矿业大学 |
主分类号: | G06T7/13 | 分类号: | G06T7/13;G06T7/136 |
代理公司: | 32200 南京经纬专利商标代理有限公司 | 代理人: | 许方 |
地址: | 221116 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 非极大值抑制 边缘检测 边缘梯度 边缘图像 边缘位置 窗口边缘 窗口检测 方向信息 多尺度 像素 图像 检测 保留 | ||
本发明公开了一种多尺度SAR图像边缘检测方法,利用大小不同的窗口计算图像中不同方向的边缘梯度,然后将不同大小、不同方向的所有的梯度中的最大值及其对应的方向信息保留下来,最后通过非极大值抑制得到最终宽度为一个像素的边缘图像,该方法可以利用不同大小、不同方向的窗口检测边缘,有效克服单一窗口边缘检测时得到的边缘位置不准的缺陷。
技术领域
本发明属于图像处理技术领域,尤其涉及一种多尺度SAR图像边缘检测方法。
背景技术
图像中的边缘是图像中最基本的、不易改变的特征,是图像中信息最集中的地方,是进行图像特征提取、目标识别、图像分割等处理的基础,因此,边缘检测是图像处理领域最基本的问题之一。然而,由于成像过程中传感器、成像原理、成像位置及成像对象等因素的影响,图像中的边缘信息在图像中的表现千差万别,这使得边缘难于被精确检测出来。
目前的图像边缘检测算法大致可分为:1)基于空域梯度的边缘检测算法;2)基于频域的小波边缘检测算法;3)基于机器学习的边缘检测算法;4)基于其它理论技术的边缘检测算法。这些方法中,基于空域梯度的边缘检测算法最为经典、影响最大,而其中又以Canny边缘检测算法最为典型。但是这类算法的检测窗口均为固定大小,在图像噪声水平较高时,表现很差。
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像处理领域,由于相干斑噪声强烈,一般的边缘检测算法难以达到理想效果,常用的边缘检测器是均值比(Ratio ofAverage,ROA)检测器。该检测器是一种基于空域梯度的检测器,其检测窗口和方向均可以作为参数进行手动调节,并且由于采用了区域均值来代替单个像素值,因此具有较好的抗噪性。但是,该检测器的窗口大小仍然是单一的,而对于一幅图像来说,可能在不同的区域其合适的检测窗口大小是不同的。例如,在细节信息丰富的区域,一般比较适合用小窗口进行检测,因为当使用较大窗口进行边缘检测时,在一些点、线等目标周围检测出的边缘位置会有较大偏差;而边缘信息较弱,同质像素较多的区域,一般比较适合用大窗口进行检测,因为小窗口对噪声较为敏感,检测出的虚假边缘较多。因此,单一大小的检测窗口无法同时满足要求。
发明内容
本发明的目的在于克服常规ROA边缘检测器利用单一大小的检测窗口无法满足要求的缺陷,提出了一种综合利用不同大小检测窗口的多尺度SAR图像边缘检测方法。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种多尺度SAR图像边缘检测方法,包括以下步骤:
步骤1:设置最大检测窗口Wmax和最小检测窗口Wmin,获得NW=(Wmax–Wmin)/2+1个大小不同的窗口W;
步骤2:对于NW个大小不同的窗口,分别设置其检测模板参数l、w、d、θ,每个大小为W的窗口可获得Nθ=π/θ个模板,则共获得N=NW*Nθ个不同大小W、不同方向θ的模板;其中,l是模板长度,w是模板宽度,d是模板区域R1和R2间的距离,θ是模板对应的角度;
步骤3:对于每个像素p,利用N个不同大小W、不同方向θ的模板,计算模板区域R1和R2之间的梯度DW(θ),共获得N个梯度值以及对应的角度值;
步骤4:选择N个梯度值中的最大值,记录该值及其对应的角度,继续处理下一个像素,直到所有像素都处理完毕,得到一幅梯度图像和一幅角度图像;
步骤5:进行梯度方向非极大值抑制,得到细化后的梯度图像;具体如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学,未经中国矿业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910981758.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种基于形状信息的腕骨区域分割方法
- 下一篇:点云地面点的识别方法及装置