[发明专利]基于神经网络的直落失重式物料下料机控制器有效
申请号: | 201910836277.0 | 申请日: | 2017-09-19 |
公开(公告)号: | CN110697438B | 公开(公告)日: | 2021-07-02 |
发明(设计)人: | 邹细勇;朱力;穆成银 | 申请(专利权)人: | 中国计量大学 |
主分类号: | B65G65/00 | 分类号: | B65G65/00;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 310018 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 神经网络 直落 失重 物料 下料机 控制器 | ||
本发明公开了基于神经网络的直落失重式物料下料机控制器,其包括信号采集模块、处理模块、神经网络模块、存储模块和输出模块。神经网络模块基于下料仓的料位、落料率、物料密度及下料阀开口孔径对物料失重值进行预测,从而对下料阀的关闭时间进行调节。基于神经网络对下料中的称重行为进行建模,本发明训练后的网络能对不同落料状态下的下落物料失重值进行准确预测,从而可实现直接精确下料控制且适用于小批量生产;还结合仓位传感器的检测和搅拌器的控制对下料仓内的物料堆积形态进行调节,减小了落料率波动;又通过对下料累积误差的控制,减小了批量下料的总误差。
本申请为申请号201710863074.1、申请日2017年09月19日、发明名称“基于神经网络的直落失重式物料下料机及其控制器”的分案申请。
技术领域
本发明涉及定量下料领域,具体涉及一种基于神经网络的直落失重式物料下料机控制器。
背景技术
在工农业制造和商品包装中,有大量的粉粒物料,如铁精矿、煤粉等炼铁原料,聚丙烯、聚苯乙烯、聚氯乙烯、轻甲基纤维素、聚丙烯睛、环氧树脂粉末涂料等化工原料,石英砂、水泥等建材原料,洗衣粉等日用化工产品,小米、大豆等谷物豆类农产品,或粉、渣、粒状加工食品,饲料、化肥、农药等农业生产物料,以及粉粒状的保健品、中西药剂、调味品等均需要自动定量包装或者配料制造。
目前我国有很多企业仍然采用手工定量配料或者包装,一方面劳动强度大,速率慢,经济效益差;另一方面,食品、药品等手工定量往往不能满足卫生要求,有毒有害的物料,人工参与定量容易对人体造成伤害。因此对生产企业来说,急需提供价廉的具有较高速率和准确度的多组份自动定量下料设备或者装置,满足大量的物料定量包装或者配料制造要求。
目前国内外粉粒物料自动定量下料装置常用方法有两种,容积式和称重式。容积式定量依据物料容积进行计量充填或者投料,定量投料迅速,但定量物料质量受到物料密度变化而变化。如申请号为200920248298.2的中国专利考虑到快速下料时难以控制定量而通过先快后慢的方法来减小供料落差的影响,但其下料终值只能接近期望值,准确度不高。
称重式定量依据物料质量进行计量充填或者投料,从称重计量方法的不同其又可分为增量式与失重式两种。增量式对不断下落到计量斗中的物料进行称重,这种方式需要在下料过程中不断称重,根据称重结果反馈控制下料量,由于物料是连续下落的,当下料阀门关闭时,仍有部分物料在空中。为了补偿空中物料对计量精度的干扰,很多方案采用提前关闭阀门的技术,如申请号为201410230888.8的中国专利将配料称重过程划分为三个阶段,并在最后一个阶段采用迭代学习控制方式来计算关闭提前控制量。
相比于增量式,失重式称重方式通过不断称取料仓重量来计量下落物料的重量,从而避开了空中物料的问题。如申请号为200710142591.6、201010108011.3和201310178558.4的中国专利,均通过称重仓重量减小的计算来对下落物料进行计量,这些方案虽然无需考虑空中量,但由于未考虑物料从下料阀门落下时的失重效应而影响了称重计量的精度,不能满足高精度下料的要求,并且这些方案只能连续下料而不能直接应用于按批次的下料。
相比以往的失重式计量下料,如果能通过对影响下落物料失重等效值各种因素的分析来构造一种非线性映射,则可以基于这种映射对失重式称重过程中物料的实际下料量进行计量。
发明内容
传统的失重秤是通过在工作时控制重量损失的原理实现计量的,对出料装置和称重料斗进行称重,根据失重秤计量斗内每单位时间内物料重量的减少ΔG/Δt来计算失重秤的给料流量。以往的失重称重方法,虽然是通过差分方法来获得流量,但是在两次差分之间的落料流率变化、物料粘结、以及环境如振动等因素的影响,都会影响差分结果的准确性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量大学,未经中国计量大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910836277.0/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类