[发明专利]一种基于高斯混合模型的地震相分析方法及存储介质在审
| 申请号: | 201910818527.8 | 申请日: | 2019-08-30 |
| 公开(公告)号: | CN112444855A | 公开(公告)日: | 2021-03-05 |
| 发明(设计)人: | 刘百红;郑四连;陈金焕;段文超 | 申请(专利权)人: | 中国石油化工股份有限公司;中国石油化工股份有限公司石油物探技术研究院 |
| 主分类号: | G01V1/28 | 分类号: | G01V1/28;G01V1/30 |
| 代理公司: | 北京聿宏知识产权代理有限公司 11372 | 代理人: | 吴大建;张杰 |
| 地址: | 100728 北*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 混合 模型 地震 分析 方法 存储 介质 | ||
本发明公开了基于高斯混合模型的地震相分析方法及存储介质。基于高斯混合模型的地震相分析方法,包括:对于给定的叠后地震数据体,选择待分类地震数据;对所述待分类地震数据分类成K类分类地震数据,并对K类分类地震数据分别定义类别值;利用K类分类地震数据和其分别对应的类别值训练高斯混合模型;利用训练好的高斯混合模型对目标地震数据进行分类以进行地震相分析。本发明实施例的基于高斯混合模型的地震相分析方法及存储介质,可以准确地对目标地震数据的波形进行分类,通过逐道对某一层目标地震数据进行分类,可以细致地刻画目标地震数据的横向变化,得到地震异常体的平面分布规律,从而进行沉积相的解释。
技术领域
本发明属于油气及煤层气勘探地震数据处理技术领域,特别涉及一种基于高斯混合模型的地震相分析方法及存储介质。
背景技术
在石油、煤炭等地下沉积矿产的勘探开发中,沉积相研究具有极为重要的意义。在地下相分析中通过岩石资料能够观察到目的层的沉积相标志,通过地震相分析仅用少量钻孔就能较好地掌握沉积相平面变化特征,是现在研究沉积相的一种重要手段。
地震相是在地震反射时间剖面上所表现出来的反射波的面貌,地震相分析就是识别每个层序内独特的地震反射波组特征及其形态组合,并将其赋予一定的地质含义,进而进行沉积相的解释。
地震信号波形是地震数据的基本性质,它包含了所有的定性和定量信息,如反射模式、相位、频率和振幅等信息,是地震信息的总体特征,其动态变化蕴含了丰富的内在信息,能够真实地反映地下结构的特征。波形分类法是最常采用的地震相分析方法,通过对地震信号波形进行分类,可以实现对地震相的划分。
传统的波形分类方法有K均值和自组织神经网络方法,它们都采用无监督的学习方法,并且是直接对样本或者观测数据进行分类,即按照内在相似性将数据划分为多个类别使得类内相似性大,类间相似性小。这种无监督的学习方法对地震信号波形进行分类时不够准确。另一方面它们都属于硬分类方法,即严格地限定了某个数据点上的数据只属于某类,而与其它类绝不相干,这也与实际不符。
因此,需要提供一种基于高斯混合模型的地震相分析方法及存储介质,其能够准确的对地震信号波形进行分类。
发明内容
本发明所要解决的技术问题之一是如何提供一种准确的基于高斯混合模型的地震相分析方法及存储介质,其能够对地震信号波形进行分类。
为了解决上述技术问题,本申请的实施例首先提供了一种基于多层感知器的地震相分析方法,其包括:
对于给定的叠后地震数据体,选择待分类地震数据;
对所述待分类地震数据分类成K类分类地震数据,并对K类分类地震数据分别定义类别值;
利用K类分类地震数据和其分别对应的类别值训练高斯混合模型;
利用训练好的高斯混合模型对目标地震数据进行分类以进行地震相分析。
优选地,所述给定的叠后地震数据体包括时间域的地震数据或深度域的地震数据。
优选地,对于给定的叠后地震数据体,选择待分类地震数据,包括:
对于给定的叠后地震数据体,根据给定中心点和时窗大小选择待分类地震数据,或
对于给定的叠后地震数据体,根据给定解释层位和时窗大小选择待分类地震数据。
优选地,利用K类分类地震数据和其分别对应的类别值训练高斯混合模型,包括:
第一步骤,对高斯混合模型的参数进行初始化,所述参数包括各类的簇中心、每个K类分类地震数据隶属于各类的概率值、各类在K类中出现的概率值;
第二步骤,根据经过初始化的参数计算每个K类分类地震数据隶属于各类的计算概率值;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油化工股份有限公司;中国石油化工股份有限公司石油物探技术研究院,未经中国石油化工股份有限公司;中国石油化工股份有限公司石油物探技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910818527.8/2.html,转载请声明来源钻瓜专利网。





