[发明专利]一种数据安全分发方法有效

专利信息
申请号: 201910811364.0 申请日: 2019-08-30
公开(公告)号: CN110519170B 公开(公告)日: 2021-07-09
发明(设计)人: 陈果;程宝雷;樊建席;王大进;王懿丰 申请(专利权)人: 苏州大学
主分类号: H04L12/735 分类号: H04L12/735;H04L12/709
代理公司: 宁波高新区核心力专利代理事务所(普通合伙) 33273 代理人: 尤莹
地址: 215000 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 数据 安全 分发 方法
【说明书】:

发明公开了一种数据安全分发方法,包括:基于n维扩展立方体的数据中心网络,构造所述数据中心网络上以任一顶点为根的n‑1棵高可靠并行树;基于所述n‑1棵高可靠并行树,在任意两个服务器之间通过n‑1条路径安全地分发数据。本发明的AQLcube数据中心网络具有容易部署的特点。本发明首次引入给出扩展立方体上原图上的边不相交哈密尔顿圈来构建AQLCube数据中心网络上一组高可靠并行树。进一步,基于该组高可靠并行树,能够使得重要数据在任意两个服务器之间通过n‑1条路径进行安全分发,这些路径上除发送和接收服务器外,一台服务器至多出现在一个路径中。

技术领域

本发明属于网络数据分发技术领域,具体涉及一种AQLCube数据中心网络上的数据安全分发方法。

背景技术

扩展立方体(Augmented Cube)是通过在超立方体上增加边而得到的一种重要变型。与n维超立方体Qn相比,n维扩展立方体AQn具有更小的直径和更大的顶点度数,受到了研究者们的广泛关注。AQn具有如下性质:

(1)AQn与Qn一样,皆是顶点对称的。

(2)AQn的直径是约为Qn的一半。

(3)AQn是(2n-1)-边连通的和(2n-1)-顶点连通的,接近于超立方体的两倍(这里,n≠3)。

在现实世界中,交换机是比较廉价的且具有两个网卡的普通计算机作为服务器是比较容易配置的。

迄今为止,基于扩展立方体结构的数据中心网络上还没有高可靠并行树的构造方法。

发明内容

本发明的目的是通过以下技术方案实现的。

为了解决现有技术中存在的技术问题,本发明提供了一种数据安全分发方法,包括:

基于n维扩展立方体的数据中心网络,构造所述数据中心网络上以任一顶点为根的n-1棵高可靠并行树;

基于所述n-1棵高可靠并行树,在任意两个服务器之间通过n-1条路径安全地分发数据。

进一步地,构造所述数据中心网络上以任一顶点为根的n-1棵高可靠并行树,包括:

将n维扩展立方体分解为一个n维超立方体和两个n-1维超立方体;

根据n维超立方体中的n/2条哈密顿圈构造n维扩展立方体中n-1条哈密顿路径;

根据所述n维扩展立方体中的n-1条哈密顿路径构造所述数据中心网络中n-1棵完全独立生成树。

进一步地,在n维扩展立方体的线图中从任何一个顶点到其它任意顶点之间存在n-1条边不相交同时顶点不相交的路径。

进一步地,所述n维超立方体和两个n-1维超立方体的边不相交。

进一步地,所述n维扩展立方体的线图是将n维扩展立方体中的任意一条边都转换为其线图中的一个点,相邻接的边对应线图的连接转换后的两个点的边。

进一步地,所述n-1棵完全独立生成树中第i棵树的构造过程如下:

根据已经构造的n维扩展立方体中的第i条哈密顿路径得到对应线图上的一条路径,并将得到的路径中的点和边加入到第i棵树;

将线图中其它点挂载到第i棵树中,并更新第i棵树的点和边。

进一步地,所述数据中心网络为AQLCube。

进一步地,所述AQLCube数据中心网络的设备包括交换机和具有两个网卡的服务器。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910811364.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top