[发明专利]语音识别方法、装置、设备以及计算机可读存储介质有效
| 申请号: | 201910779740.2 | 申请日: | 2019-08-22 |
| 公开(公告)号: | CN110534095B | 公开(公告)日: | 2020-10-23 |
| 发明(设计)人: | 彭星源;邵俊尧;贾磊 | 申请(专利权)人: | 百度在线网络技术(北京)有限公司 |
| 主分类号: | G10L15/06 | 分类号: | G10L15/06;G10L15/02 |
| 代理公司: | 北京市金杜律师事务所 11256 | 代理人: | 李辉;丁君军 |
| 地址: | 100080 *** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 语音 识别 方法 装置 设备 以及 计算机 可读 存储 介质 | ||
1.一种语音识别方法,包括:
针对输入的语音信号,通过第一声学模型和第二声学模型分别获得第一声学解码信息和第二声学解码信息,所述第一声学模型通过声学建模而生成并且所述第二声学模型通过声学和语言的联合建模而生成;
分别根据所述第一声学解码信息和所述第二声学解码信息,确定第一组候选识别结果和第二组候选识别结果;以及
基于所述第一组候选识别结果和所述第二组候选识别结果,确定针对所述语音信号的识别结果。
2.根据权利要求1所述的方法,其中所述第一声学模型是连接时序分类(CTC)模型,所述第二声学模型是流式多级的截断注意力(SMLTA)模型,并且通过第一声学模型和第二声学模型分别获得第一声学解码信息和第二声学解码信息包括:
基于所述语音信号,通过所述连接时序分类(CTC)模型获得所述第一声学解码信息,所述第一声学解码信息包括与所述语音信号有关的尖峰信息;以及
基于所述语音信号和所述尖峰信息,通过所述流式多级的截断注意力(SMLTA)模型中的注意力解码器获得所述第二声学解码信息。
3.根据权利要求2所述的方法,其中确定第一组候选识别结果和第二组候选识别结果包括:
由连接时序分类(CTC)解码器根据所述第一声学解码信息来确定所述第一组候选识别结果;以及
由流式多级的截断注意力(SMLTA)解码器根据所述第二声学解码信息来确定所述第二组候选识别结果。
4.根据权利要求3所述的方法,其中:
确定所述第一组候选识别结果包括:根据第一语言模型和所述第一声学解码信息来确定所述第一组候选识别结果,并且
确定所述第二组候选识别结果包括:根据第二语言模型和所述第二声学解码信息来确定所述第二组候选识别结果,
其中所述第一语言模型与所述第二语言模型不同。
5.根据权利要求1所述的方法,其中确定针对所述语音信号的识别结果包括:
基于所述第一组候选识别结果和所述第二组候选识别结果的组合,获得第三组候选识别结果;
提取所述第三组候选识别结果中的每个候选识别结果的多个特征;以及
基于每个候选识别结果的多个特征,确定针对所述语音信号的所述识别结果。
6.根据权利要求5所述的方法,其中提取所述第三组候选识别结果中的每个候选识别结果的多个特征包括:
获得每个候选识别结果的声学特征和语言特征;以及
确定每个候选识别结果的领域特征。
7.根据权利要求6所述的方法,其中提取所述第三组候选识别结果中的每个候选识别结果的多个特征还包括:
提取与每个候选识别结果相关联的以下至少一个特征:置信度特征、语义特征、相似度特征、以及用户特征。
8.根据权利要求1所述的方法,其中所述第一组候选识别结果包括所确定的所述识别结果,而所述第二组候选识别结果不包括所确定的所述识别结果。
9.一种语音识别装置,包括:
声学信息获得模块,被配置为针对输入的语音信号,通过第一声学模型和第二声学模型分别获得第一声学解码信息和第二声学解码信息,所述第一声学模型通过声学建模而生成并且所述第二声学模型通过声学和语言的联合建模而生成;
候选结果确定模块,被配置为分别根据所述第一声学解码信息和所述第二声学解码信息,确定第一组候选识别结果和第二组候选识别结果;以及
识别结果确定模块,被配置为基于所述第一组候选识别结果和所述第二组候选识别结果,确定针对所述语音信号的识别结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百度在线网络技术(北京)有限公司,未经百度在线网络技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910779740.2/1.html,转载请声明来源钻瓜专利网。





