[发明专利]一种基于深度学习的抽油机噪声定位方法在审
| 申请号: | 201910661855.1 | 申请日: | 2019-07-22 |
| 公开(公告)号: | CN110619383A | 公开(公告)日: | 2019-12-27 |
| 发明(设计)人: | 张猛;苗永康;王荣伟;邓金华;孙剑;孙兴刚;王蓬 | 申请(专利权)人: | 中国石油化工股份有限公司;中国石油化工股份有限公司胜利油田分公司物探研究院 |
| 主分类号: | G06N3/04 | 分类号: | G06N3/04 |
| 代理公司: | 11350 北京科亿知识产权代理事务所(普通合伙) | 代理人: | 汤东凤 |
| 地址: | 100728 北*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 抽油机 地震道 噪声 训练集 预处理 测试样本 地震数据 定量评价 定位功能 定位结果 均值滤波 数据补充 随机选取 训练过程 网络 测试集 滑动窗 降采样 能量谱 滑动 单步 分块 标注 测试 学习 | ||
本发明公开了一种基于深度学习的抽油机噪声定位方法,步骤如下:S1、利用滑动窗单步滑动对地震数据按列分块,得到若干固定大小的局部地震道集,若包含抽油机噪声的地震道数量达到阈值Th1,将其标注为1,包含抽油机噪声的地震道数量低于阈值Th2,将其标记为0;S2、对局部地震道集进行预处理,计算其能量谱、进行均值滤波,然后降采样,随机选取部分数据作为训练集,剩余部分作为测试集;S3、搭建深度CNN网络,并利用步骤S2中得到的训练集对CNN网络进行训练,训练过程中利用错分的数据补充训练集反复训练;S4、利用测试样本对步骤S3中训练好的CNN网络进行测试,对其定位功能进行定量评价;S5、根据步骤S4中的定位结果对定位到的抽油机噪声进行宽度估计。
技术领域
本发明涉及地球物理和地震数据检测分析技术领域,尤其涉及一种基于深度学习的抽油机噪声定位方法。是一种智能对地震数据中的抽油机噪声进行定位并自适应确定滤波器参数的一种手段。
背景技术
抽油机噪声是老油田二次高精度勘探和深层地震勘探的重要影响因素,其形态如图1所示。抽油机噪声的存在严重降低了地震数据的分辨率,为后续的地震数据处理工作增加了难度。关闭抽油机会严重影响生产效率,成本较高,因此地震数据的后续处理至关重要。目前抽油机噪声的压制方法多为盲源分离、异常振幅衰减等。这些方法采用固定参数进行噪声滤波,容易造成噪声残留和损失有效信号,因此,本发明提出一种基于深度卷积神经CNN网络(Convolutional Neural Network,CNN)对抽油机噪声自动进行定位,并利用图像后处理估计抽油机噪声宽度的方法,用于自适应估计噪声滤波的参数。
发明内容
本发明目的是针对上述问题,提供一种基于深度学习的抽油机噪声定位方法,可以自动对二次高精度勘探和深度地震勘探数据中的抽油机噪声进行定位,从而可以自适应估计噪声滤波的参数,一定程度避免有效信号的损失。本发明基于深度卷积神经CNN网络对包含抽油机噪声的地震数据进行抽油机噪声定位,利用固定大小窗口的滑动对地震数据进行分块,并利用分块后的数据包含抽油机噪声的程度进行标注。
为了实现上述目的,本发明的技术方案是:
一种基于深度学习的抽油机噪声定位方法,该方法的步骤是:
S1、利用固定大小的滑动窗单步滑动对地震数据按列分块,得到若干固定大小的局部地震道集,每个局部地震道集包含固定数量的地震道,根据当前patch包含一段扫把状的抽油机噪声的道数是否达到所设定阈值对其进行标注,若包含抽油机噪声的地震道数量达到阈值Th1,将其标注为1,包含抽油机噪声的地震道数量低于阈值Th2,将其标记为0,其余不用作训练;
S2、对步骤S1中得到的局部地震道集进行预处理,计算其能量谱、进行均值滤波,然后降采样,随机选取部分预处理之后的数据作为训练集,剩余部分作为测试集;
S3、搭建深度CNN网络,并利用步骤S2中得到的训练集对CNN网络进行训练,训练过程中利用错分的数据补充训练集反复训练;
S4、利用测试样本对步骤S3中训练好的CNN网络进行测试,对其定位功能进行定量评价;
S5、根据步骤S4中的定位结果对定位到的抽油机噪声进行宽度估计。
作为对上述技术方案的改进,在步骤S1中,滑动窗的列方向固定大小为w;每次选取w道地震数据。
作为对上述技术方案的改进,在步骤S2中,局部地震道集记为X,首先对其进行列方向的均值滤波得到滤波后的数据其中A为均值滤波器,然后利用双三次插值对其进行降采样,得到
作为对上述技术方案的改进,在步骤S3中,CNN网络包括四个卷积层和三个全连接层;利用训练集对CNN网络进行训练,利用测试集对训练好的CNN网络进行测试,并利用错分的样本对CNN网络进行微调;CNN网络使用交叉熵loss函数:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油化工股份有限公司;中国石油化工股份有限公司胜利油田分公司物探研究院,未经中国石油化工股份有限公司;中国石油化工股份有限公司胜利油田分公司物探研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910661855.1/2.html,转载请声明来源钻瓜专利网。





