[发明专利]一种激光雷达的点云数据处理方法和系统有效
| 申请号: | 201910635164.4 | 申请日: | 2019-07-15 |
| 公开(公告)号: | CN110346808B | 公开(公告)日: | 2023-01-31 |
| 发明(设计)人: | 夏广武;杨建 | 申请(专利权)人: | 上海点积实业有限公司 |
| 主分类号: | G01S17/06 | 分类号: | G01S17/06;G06N3/0464;G06N3/08 |
| 代理公司: | 北京锺维联合知识产权代理有限公司 11579 | 代理人: | 郭丽 |
| 地址: | 200120 上海市浦*** | 国省代码: | 上海;31 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 激光雷达 数据处理 方法 系统 | ||
本发明公开了一种激光雷达的点云数据处理方法和系统,包括:接收激光雷达的点云数据;利用预设深度卷积神经网络模型对点云数据进行预处理操作,获得处理后的点云数据;输出处理后的点云数据。该技术方案,通过预设深度卷积神经网络模型对激光雷达的点云数据进行处理,如进行点云数据的信号增强和分辨率放大等,这样,使得点云数据无需进行滤波处理,还可以满足不同地形和不同气象条件下的数据处理需求。
技术领域
本发明涉及深度学习算法技术领域,更具体地,涉及一种激光雷达的点云数据处理方法和系统。
背景技术
由于激光雷达能在短时间内获得地物三维坐标信息,并且数据量极大,因此,如何快速从海量的激光雷达的点云数据中提取有用的信息是目前研究的热点和难点。
相关技术中,主要采用滤波方法对激光雷达的点云数据进行处理,包括基于数学形态学的滤波算法,基于坡度的滤波算法,基于数据分割的滤波算法等等,但是,滤波方法的实用性很窄,无法满足不同的地形和气象条件。
发明内容
鉴于上述问题,本发明提出了一种激光雷达的点云数据处理方法和相应的系统,其可以通过深度卷积神经网络模型对激光雷达的点云数据进行处理,从而满足不同地形和不同气象条件下的数据处理需求。
根据本发明实施例的第一方面,提供一种激光雷达的点云数据处理方法,包括:
接收激光雷达的点云数据;
利用预设深度卷积神经网络模型对所述点云数据进行预处理操作,获得处理后的点云数据;
输出所述处理后的点云数据。
在一个实施例中,优选地,所述利用预设深度卷积神经网络模型对所述点云数据进行预处理操作,包括:
通过检测所述点云数据确定所需的预处理操作;
利用所述所需的预处理操作对应的预设深度卷积神经网络模型对所述点云数据进行预处理操作;
或者,
利用第一深度卷积神经网络模型对所述点云数据进行信号增强操作,得到信号增强点云数据;
通过检测所述信号增强点云数据判断是否进行进一步的预处理操作;
在确定需要进一步的预处理操作后,利用所需要的进一步预处理操作对应的预设深度卷积神经网络模型对所述点云数据进行预处理操作。
在一个实施例中,优选地,在接收激光雷达的点云数据之前,所述方法还包括:
根据深度学习算法训练得到所述预设深度卷积神经网络模型。
在一个实施例中,优选地,所述根据深度学习算法训练得到所述预设深度卷积神经网络模型,包括:
获取训练样本数据集合,所述训练样本数据集合包括多组训练样本数据,每组训练样本数据包括点云目标数据和输入点云数据;
将所述训练样本信号集合中的输入点云数据输入预设深度卷积神经网络模型中,得到每组训练样本信号对应的训练结果信号;
将每个所述训练结果信号与各自对应的训练样本信号中的所述点云目标数据进行对比,得到对比结果;
根据所述对比结果确定所述预设深度卷积神经网络模型的神经网络参数。
在一个实施例中,优选地,所述预设深度卷积神经网络模型用于进行以下任一项操作:信号去噪,信号增强操作和分辨率放大操作,
当所述预设深度卷积神经网络模型用于进行信号去噪时,所述输入点云数据中叠加有所述点云目标数据和至少一个类型的高斯噪声信号;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海点积实业有限公司,未经上海点积实业有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910635164.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:隧道数据采集设备及方法
- 下一篇:一种建图与导航定位用测距装置





