[发明专利]基于矩阵分解与网络嵌入联合模型的社会化推荐方法有效
申请号: | 201910563575.7 | 申请日: | 2019-06-26 |
公开(公告)号: | CN110321494B | 公开(公告)日: | 2021-08-31 |
发明(设计)人: | 邬俊;张洪磊 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06F16/9536 | 分类号: | G06F16/9536;G06Q50/00 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 黄晓军 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 矩阵 分解 网络 嵌入 联合 模型 社会化 推荐 方法 | ||
本发明提供了一种基于矩阵分解与网络嵌入联合模型的社会化推荐方法。该方法包括:构建用户‑物品评分矩阵和用户‑用户社交网络,同时根据用户‑用户社交网络生成用户社交语料;利用用户‑物品评分数据和用户社交语料训练矩阵分解与网络嵌入联合模型,得到用户特征矩阵和物品特征矩阵;根据用户特征矩阵和物品特征矩阵预测出未观测评分;将预测评分数值较高的若干物品推荐给相应用户。本发明通过设计统一目标函数无缝整合了矩阵分解模型与网络嵌入模型;基于统一的优化框架,实现了矩阵分解模型与网络嵌入模型之间的双向促进与协同优化,从而可向用户精准推荐其所感兴趣的物品。
技术领域
本发明涉及计算机应用技术领域,尤其涉及一种基于矩阵分解与网络嵌入联合模型的社会化推荐方法。
背景技术
互联网时代,如何有效调节多元化信息呈现出的丰富性与人们注意力的局限性之间的矛盾,已然成为当下信息产业亟需解决的技术难题。在此背景下,推荐系统应运而生,以应对大数据所引起的信息过载问题。
协同过滤(collaboritive filtering)是推荐系统背后的核心技术,其通过分析“用户-物品”交互历史,预测未观测的“用户-物品”相关性。矩阵分解(matrixfactorization)模型是目前最为主流的协同过滤手段,矩阵分解的核心思想是:通过分解“用户-物品”交互矩阵(简称UI矩阵),将用户和物品映射到同一个低维向量空间,进而可通过计算用户特征向量与物品特征向量内积的方式预测“用户-物品”相关性。但该方法的效果严重受限于数据稀疏问题,通常情况下已观测“用户-物品”交互记录仅占UI矩阵的1%左右。为此,一些学者建议在矩阵分解模型中引入用户社交关系,以期缓解UI矩阵的数据稀疏问题。
现有社会化推荐技术大致分为两类:共享表示学习和修正表示学习。共享表示学习的代表性工作如SoRec模型,该方法同时分解“用户-物品”交互矩阵和“用户-用户”社交矩阵,其间共用同一组用户特征变量,以期用户特征变量可同时保有用户的个性化喜好及其社会属性;修正表示学习的代表性工作如SoReg模型,该模型将用户社交关系作为约束信息,以修正“用户-物品”矩阵分解过程,以期那些社交连接强度大的用户可获得相似的特征向量。
目前,基于(深度)神经网络的网络嵌入技术发展迅猛,被广泛用于各类社交网络分析任务。网络嵌入首先借助随机游走获取每个结点的高阶近邻关系,然后借助神经网络强大的特征转换和抽象能力,将复杂的社交拓扑结构嵌入到低维向量空间中。近年来,一些工作尝试将网络嵌入模型与矩阵分解模型相结合,获得了比传统社会化推荐方法更佳的效果。例如,CUNE模型首先对用户社交网络进行节点嵌入,然后利用嵌入结果修正“用户-物品”矩阵分解过程。
上述现有技术中的社会化推荐方法的缺点为:经典社会化推荐系统(如SoRec模型和SoReg模型)多以启发式方法使用社交信息,难以深度挖掘社交网络的复杂拓扑结构。近年来,尽管一些社会化推荐系统尝试在社会化推荐系统中使用网络嵌入模型(如CUNE模型),以期更好地挖掘和利用社交信息。但是由于技术原理不同,矩阵分解模型与网络嵌入模型很难整合,故而目前业界多采用两阶段学习方式:首先利用网络嵌入模型从“用户-用户”社交网络中学习用户的社会化向量表示;据此作为修正信息,再利用矩阵分解模型从“用户-物品”交互矩阵中学习用户特征和物品特征。这种两阶段方式存在两方面的弊端:
1)常规的网络嵌入模型采用无监督学习方式,其目的是通用的,而非为推荐任务订制的;而社交网络是复杂多面的,若没有监督信号加以引导,网络嵌入模型难以挖掘出那些有助于推荐系统的社交属性。
2)由于分离式的两阶段设计,网络嵌入模型与矩阵分解模型的目标函数不统一,这样第一阶段产生的最优结果,对第二阶段推荐任务而言未必最优;此外,网络嵌入模型含有大量参数,使得两个模型联合调参具有很大难度。
发明内容
本发明的实施例提供了一种基于矩阵分解与网络嵌入联合模型的社会化推荐方法,以克服现有技术的问题。
为了实现上述目的,本发明采取了如下技术方案。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910563575.7/2.html,转载请声明来源钻瓜专利网。