[发明专利]描述文本生成模型的训练方法和装置有效
申请号: | 201910541625.1 | 申请日: | 2019-06-21 |
公开(公告)号: | CN110377902B | 公开(公告)日: | 2023-07-25 |
发明(设计)人: | 李法远;陈思姣;罗雨 | 申请(专利权)人: | 北京百度网讯科技有限公司 |
主分类号: | G06F40/279 | 分类号: | G06F40/279;G06F18/214;G06N3/08 |
代理公司: | 北京鸿德海业知识产权代理有限公司 11412 | 代理人: | 田宏宾 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 描述 文本 生成 模型 训练 方法 装置 | ||
本发明提供了一种描述文本生成模型的训练方法和装置,其中方法包括:获取训练数据,训练数据包括:结构化数据以及各组结构化数据对应的参考描述文本;对训练数据进行预处理,得到参考描述文本对应的数据序列;利用结构化数据以及参考描述文本对应的数据序列,训练第一序列到序列seq2seq模型;利用第一seq2seq模型输出的第一数据序列和参考描述文本,训练第二seq2seq模型;利用训练完成的第一seq2seq模型和第二seq2seq模型,得到描述文本生成模型,描述文本生成模型用于针对输入的结构化数据生成描述文本。
【技术领域】
本发明涉及计算机应用技术领域,特别涉及一种描述文本生成模型的训练方法、装置、设备和计算机存储介质。
【背景技术】
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就被认为是现有技术。
诸如表格数据等结构化数据的阅读和理解通常是不友好且枯燥的,通常需要具有专业知识背景的人花费大量时间才能够读懂数据所表达的含义。然而,大多数领域采集和存储的均是结构化数据,例如天气数据、财经数据、交通数据等等。为了降低阅读者的门槛和节省阅读时间,需要将结构化数据转化为描述文本,使得用户能够通过描述文本获知结构化数据所表达的含义。
现有针对结构化数据生成描述文本的方式主要是基于人工配置的模板,根据一定逻辑条件进行模板选择和数据填充,得到描述文本。但这种方式需要大量的专家知识才能够完成模板和逻辑条件的配置,耗费人力。
【发明内容】
有鉴于此,本发明提供了一种描述文本生成模型的训练方法、装置、设备和计算机存储介质,以便于利用描述文本生成模型将结构化数据生成描述文本,更加节约人力。
具体技术方案如下:
一方面,本发明提供了一种描述文本生成模型的训练方法,该方法包括:
获取训练数据,训练数据包括:结构化数据以及各组结构化数据对应的参考描述文本;
对训练数据进行预处理,得到参考描述文本对应的数据序列;
利用结构化数据以及参考描述文本对应的数据序列,训练第一序列到序列seq2seq模型;利用第一seq2seq模型输出的第一数据序列和参考描述文本,训练第二seq2seq模型;
利用训练完成的第一seq2seq模型和第二seq2seq模型,得到描述文本生成模型,描述文本生成模型用于针对输入的结构化数据生成描述文本。
根据本发明一优选实施方式,所述第二seq2seq模型包括第一解码器和第二解码器;
第一解码器用于将编码器针对第一数据序列生成的中间向量,输出描述文本;第二解码器用于将第一解码器对中间向量生成的隐层向量进行重构解码,生成第二数据序列;
训练目标为:最小化第一数据序列与参考描述文本对应的数据序列之间的差异、第一解码器输出的描述文本与参考描述文本之间的差异以及第二数据序列与参考描述文本对应的数据序列之间的差异。
根据本发明一优选实施方式,获取训练数据包括:
从数据源获取结构化数据,并获取针对结构化数据人工标注的参考描述文本;或者,
从数据源获取参考描述文本,并获取针对参考描述文本人工标注的结构化数据;或者,
从数据源获取结构化数据以及该结构化数据对应的参考描述文本。
根据本发明一优选实施方式,对训练数据进行预处理,得到参考描述文本对应的数据序列包括:
将结构化数据与其对应的参考描述文本进行匹配对齐;
依据匹配对齐的结果确定参考描述文本对应的数据序列。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京百度网讯科技有限公司,未经北京百度网讯科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910541625.1/2.html,转载请声明来源钻瓜专利网。