[发明专利]一种测量在轨等离子体推力器的推力的方法及系统有效
申请号: | 201910434852.4 | 申请日: | 2019-05-23 |
公开(公告)号: | CN110160688B | 公开(公告)日: | 2020-12-25 |
发明(设计)人: | 魏立秋;丁永杰;李鸿;扈延林;吕游;于达仁 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G01L5/00 | 分类号: | G01L5/00;G06T7/90;G06F17/16;G06N3/08 |
代理公司: | 北京高沃律师事务所 11569 | 代理人: | 刘凤玲 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 测量 等离子体 推力 方法 系统 | ||
1.一种测量在轨等离子体推力器的推力的方法,其特征在于,包括:
获取拍摄的待测等离子体推力器的羽流照片;
将所述羽流照片转换成RGB三维矩阵;
对所述RGB三维矩阵进行灰度化处理,得到二维灰度矩阵;
将所述二维灰度矩阵等分为m*n个子矩阵;
利用奇异值分解计算每个所述子矩阵的奇异值,得到包含m*n个奇异值的特征值矩阵;
对所述包含m*n个奇异值的特征值矩阵进行归一化处理,得到归一化的特征值矩阵;
将所述归一化的特征值矩阵输入训练好的神经网络模型,得到所述羽流照片对应的推力;所述训练好的神经网络模型是利用已知推力的羽流照片所对应的归一化的特征值矩阵和推力值对神经网络进行训练得到的;
所述训练好的神经网络模型的训练过程包括:
获取等离子体推力器的多个样本羽流照片和每张所述样本羽流照片对应的推力值;
将每张所述样本羽流照片转换成RGB三维矩阵,得到样本羽流照片的RGB三维矩阵;
对每个所述样本羽流照片的RGB三维矩阵进行灰度化处理,得到样本羽流照片的二维灰度矩阵;
将每个所述样本羽流照片的二维灰度矩阵等分为m*n个子矩阵,得到子矩阵序列;
利用奇异值分解计算每个所述子矩阵序列中各个子矩阵的奇异值,得到样本羽流照片的特征值矩阵;
对每个所述样本羽流照片的特征值矩阵进行归一化处理,得到样本羽流照片的归一化的特征值矩阵;
以各所述样本羽流照片的归一化的特征值矩阵作为神经网络的输入,以各所述样本羽流照片对应的推力值作为神经网络的期望输出,对所述神经网络进行训练,得到训练好的神经网络模型。
2.根据权利要求1所述的测量在轨等离子体推力器的推力的方法,其特征在于,所述将所述羽流照片转换成RGB三维矩阵,具体包括:
利用MATLAB软件提取所述羽流照片的三基色并生成三维矩阵。
3.根据权利要求1所述的测量在轨等离子体推力器的推力的方法,其特征在于,所述对所述RGB三维矩阵进行灰度化处理,得到二维灰度矩阵,具体包括:
利用rgb2gray函数对所述RGB三维矩阵进行灰度化处理,使所述RGB三维矩阵转换成二维灰度矩阵。
4.根据权利要求1所述的测量在轨等离子体推力器的推力的方法,其特征在于,所述利用奇异值分解计算每个所述子矩阵的奇异值,得到包含m*n个奇异值的特征值矩阵,具体包括:
利用svd函数对所述子矩阵进行奇异值分解,得到每个子矩阵的多个奇异值;
针对每个所述子矩阵,从奇异值分解得到的多个所述奇异值中筛选最大奇异值,得到m*n个最大奇异值构成的特征值矩阵。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910434852.4/1.html,转载请声明来源钻瓜专利网。
- 上一篇:多方位压力测量装置
- 下一篇:一体式切缝翘曲法残余应力测试仪