[发明专利]一种基于姿态信息约束的MAP-MRF超分辨率图像重建方法有效

专利信息
申请号: 201910347605.0 申请日: 2019-04-28
公开(公告)号: CN110060209B 公开(公告)日: 2021-09-24
发明(设计)人: 高昆;朱振宇;张廷华;韩璐;豆泽阳;周颖婕 申请(专利权)人: 北京理工大学
主分类号: G06T3/40 分类号: G06T3/40
代理公司: 北京一枝笔知识产权代理事务所(普通合伙) 11791 代理人: 张庆瑞
地址: 100089 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 姿态 信息 约束 map mrf 分辨率 图像 重建 方法
【说明书】:

发明公开了一种基于姿态信息约束的MAP‑MRF超分辨率图像重建方法,包括以下步骤:S1,建模与计算;S2,提取图像特征点;S3,建立图像序列的MAP‑MRF模型;S4,重建超分辨率:利用迭代重加权最小二乘方法进行模糊核估计,利用置信传播算法求解MRF最优解,完成超分辨率重建。本发明方法与传统超分辨率图像重建方法相比,增加了姿态信息约束,在图像之外提供了非冗余时空信息;采用MAP‑MRF模型更符合实际图像序列成像模型,可有效避免先验模型失配导致的误差,重建出的高分辨率图像更清晰,细节信息更突出,能有效的抑制噪声放大和改良观测矩阵奇异性问题。

技术领域

本发明涉及超分辨率图像重建技术领域,尤其涉及一种基于姿态信息约束的MAP-MRF超分辨率图像重建方法。

背景技术

数字光电成像系统在成像制导、工业检测、仿生机器人、航天遥感以及医疗检查等领域有着广泛的应用,获得对感兴趣目标的高分辨率图像是成像系统所追求的主要目标之一。由于CCD、CMOS等离散采样成像器件在成像过程中不可避免的存在欠采样效应,会造成获取的图像分辨率降低。图像超分辨率重建采用软件方法重建出由于欠采样导致的混叠于低频信号中的高频信号,从而获取高于系统分辨率的图像。

超分辨率重建需要对多帧序列图像进行处理获取更多的信息,也称为多画幅超分辨率重建技术。最初的超分辨率重建方法包括非均匀内插算法、频谱外推法、逆滤波、维纳滤波、能量连续降减法、长椭球波函数等。然而,这些方法基于数学意义上的纯频谱分析,并不能有效的抑制噪声放大和改良观测矩阵奇异性问题。

发明内容

基于背景技术存在的技术问题,本发明提出了一种基于姿态信息约束的MAP-MRF超分辨率图像重建方法。

本发明提出的一种基于姿态信息约束的MAP-MRF超分辨率图像重建方法,包括以下步骤:

S1,建模与计算:准备图像重建所需数据,包括低分辨率图像序列和对应的卫星平台姿态信息,基于姿态信息求解姿态变化模型和序列图像的像移模型,计算图像之间的运动矢量;

S2,提取图像特征点:采用SIFT算法提取图像特征点,结合图像移限定判别阈值,去除误配点,基于特征点进行图像配准;

S3,建立图像序列的MAP-MRF模型:建立图像序列的MAP-MRF模型,将超分辨率图像重建转化为求解最大后验概率问题;

S4,重建超分辨率:利用迭代重加权最小二乘方法进行模糊核估计,利用置信传播算法求解MRF最优解,完成超分辨率重建;

优选地,图像重建所需数据要求如下:低分辨率图像大小相等,序列数量不少于20帧,每帧图像都有对应的卫星平台姿态信息,包括俯仰角、侧滚角和偏航角。

优选地,对姿态随时间变化,提出采用多频率正弦信号组合模型进行拟合,以x方向为例:其中,f(Px)表示x轴姿态信息拟合成的光滑曲线,A为颤振扰动幅值,pi为第i阶颤振频率,表示初相位,可当作[0,2π]范围内均匀分布的随机变量,Δ为随时间的随机分布变量。

优选地,在提取图像特征点进行图像配准时,以图像像移为约束去除误配点,提高配准精度。

优选地,利用置信传播算法求解MRF最优解,求解过程结合图像运动矢量与模糊核。

本发明的有益效果为:本方法与传统超分辨率图像重建方法相比,增加了姿态信息约束,在图像之外提供了非冗余时空信息;采用 MAP-MRF模型更符合实际图像序列成像模型,可有效避免先验模型失配导致的误差,重建出的高分辨率图像更清晰,细节信息更突出,能有效的抑制噪声放大和改良观测矩阵奇异性问题。

附图说明

图1为本发明提出的一种基于姿态信息约束的MAP-MRF超分辨率图像重建方法的图像超分辨率算法思路流程图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910347605.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top