[发明专利]一种基于植被指数模型进行水稻识别和种植面积提取的方法有效

专利信息
申请号: 201910342330.1 申请日: 2019-04-26
公开(公告)号: CN109948596B 公开(公告)日: 2022-04-22
发明(设计)人: 何彬彬;冯实磊;张宏国 申请(专利权)人: 电子科技大学
主分类号: G06V20/10 分类号: G06V20/10;G06T7/62;A01G22/22
代理公司: 成都点睛专利代理事务所(普通合伙) 51232 代理人: 葛启函
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 植被 指数 模型 进行 水稻 识别 种植 面积 提取 方法
【说明书】:

一种基于植被指数模型进行水稻识别和种植面积提取的方法,属于农业遥感技术领域,本发明,将水稻与其他明显地物区分,获取遥感影像中潜在水稻种植区;然后基于遥感影像提取水稻样本像元的多个植被指数的时间曲线,结合水稻的耕作制度和农时历信息,对不同的水稻类别分别建立植被指数阈值模型进行相应类别水稻的识别,并分段逐步提取遥感影像中水稻种植面积,将不同水稻类别的种植面积合并,快速、准确地获取最终的水稻种植区分布图。相比现有利用遥感技术提取水稻种植面积的方法,本发明能够真实反映实际种植情况,提高了种植面积提取的精度。本发明深度挖掘了光学遥感数据在农业方面的应用前景,也为科学的指导农事提供了可靠的依据。

技术领域

本发明属于农业遥感技术领域,具体涉及一种基于植被指数模型进行水稻识别和种植面积提取的方法。

背景技术

水稻作为世界三大粮食作物之一,是人类最主要的粮食来源,在我国乃至世界的粮食生产结构中占有十分重要的地位。全球超过一半的人口以大米为主食,尤其对亚洲、非洲和拉美地区的发展中国家,粮食的安全生产显得尤为重要。水稻的生产状况与整个世界的粮食安全、社会稳定息息相关。掌握水稻种植面积、长势和产量信息,能够为监测中国水稻生产状况、指导农业生产与宏观调控水稻种植区划、水稻产量的预报和评估、粮食价格的预测和政府部门对粮食生产政策的制定等方面提供依据。

长期以来,我国水稻种植面积依靠人工方法,通过实地抽样调查和逐级汇总方式来获取数据,这种方法不仅需要耗费大量的人力、物力,且受到各种主客观因素的影响,精度受到很大限制。随着遥感技术的快读发展,为农作物种植面积快速、准确地实现动态监测提供了新的技术手段。遥感信息具有覆盖范围大、探测周期短、现势性强、成本低等特点,有利于短时间内连续获取大范围的地面信息,实现农作物的种植面积提取。农作物种植面积的遥感提取离不开农作物的识别。而农作物的识别主要是利用绿色植物独特的波谱反射特征,从而将农作物与其他地物区分开。

利用遥感技术进行水稻种植面积的估算,国内外已有大量的研究。以往的研究主要是通过单一时相的影响分类法对水田进行精细化监测或者通过时序归一化植被指数(NDVI)的差异监测水稻种植信息。近年来,随着新一代卫星传感器MODIS的出现,其多时相和多通道的优势,在监测水稻种植面积越来越受到重视。MODIS数据主要的三种特征指数为NDVI(归一化植被指数)、(LSWI)陆表水体指数和EVI(增强型植被指数)。NDVI可较好的反映植被绿度变化,能够消除影像内部和外部的噪音。LSWI是与植被水分含量相关的植被指数,利用对水体敏感的短波红外波段,对于处于泡田期的水稻监测有较好的效果。EVI利用蓝光波段修正大气对红光波段的影响,可提高对高生物量区的敏感度,与NDVI互为补充,

现阶段应用MODIS卫星数据进行水稻种植面积的监测往往是根据水稻的物候历,确定水稻识别的移栽期、生长期和收获期等关键时期,通过关键时期内的特征来识别水稻。水稻生长过程中有三个重要的时期:一是移栽期;二是生长期;三是收获后。在不同生育期,随着水稻生长状况发生变化,相应地光谱特征也随之变化。目前这三种植被指数广泛应用于水稻遥感监测和估产研究中,MODIS影像的最佳时相选取基于水稻不同时期的光谱特征。在移栽期,稻田常常存有2~15cm的水,此时地表是水稻和水体的混合,可通过影像中水体和水稻的混合光谱特征,利用对水体和植被较为敏感的波段或植被指数来监测NDVI和LSWI变化,识别蓄水和移栽期的水稻,并提取种植面积。利用遥感影像高精度地提取作物种植面积但是,当前研究仍然存在一些缺陷:(1)由于“同物异谱”和“异物同谱”现象以及混合像元影响了结果的准确性;(2)由于地区差异,不同种植类型水稻的耕作制度不同,不分段地一次性提取种植面积往往无法完全反映实际种植情况,导致种植面积提取结果与实际种植情况有出入。遥感影像分析方法的选取将直接影响水稻种植面积的提取精度,如何利用遥感影像实现高精度提取水稻的种植面积成为农业遥感领域亟待解决的技术问题。

发明内容

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910342330.1/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top