[发明专利]一种面向计算资源局限平台部署的实时目标检测的方法有效
| 申请号: | 201910333785.7 | 申请日: | 2019-04-24 |
| 公开(公告)号: | CN110110627B | 公开(公告)日: | 2021-03-30 |
| 发明(设计)人: | 方伟;任培铭;王林;孙俊;吴小俊 | 申请(专利权)人: | 江南大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04 |
| 代理公司: | 哈尔滨市阳光惠远知识产权代理有限公司 23211 | 代理人: | 林娟 |
| 地址: | 214000 江*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 面向 计算 资源 局限 平台 部署 实时 目标 检测 方法 | ||
本发明公开了一种面向计算资源局限平台部署的实时目标检测的方法,属于深度学习和图像处理领域。本发明通过对YOLO‑v3‑tiny神经网络进行改进,Tinier‑YOLO保留了YOLO‑v3‑tiny的前五个卷积层和池化层以及2个不同尺度的预测,引入了SqueezeNet中的Fire模块、1*1瓶颈层和Dense连接,使得该结构可以在嵌入式AI平台上实时运行。本发明的Tinier‑YOLO的模型尺寸仅为7.9MB,本发明的实时性能与YOLO‑v3‑tiny相比提高了21.8%,与YOLO‑v2‑tiny相比提高了70.8%;准确度与YOLO‑v3‑tiny相比提高了10.1%,与YOLO‑v2‑tiny相比提高了近18.2%。本发明的Tinier‑YOLO能够实现在计算资源有限的平台上仍然可以进行实时检测的目的,且效果更好。
技术领域
本发明涉及一种面向计算资源局限平台部署的实时目标检测的方法,属于深度学习和图像处理领域。
背景技术
物体检测是许多新兴领域的重要任务,如机器人导航,自动驾驶等。在这些复杂场景中,基于深度学习方法的对象检测方法比传统方法具有更大的优势,基于深度学习的目标检测算法不断兴起,如R-CNN、SPPNet、fast-R-CNN、faster-R-CNN、R-FCN和FPN。虽然这些物体检测算法达到了前所未有的准确度,但检测速度并不快,远远不能满足在低计算能力设备上的实时性的要求。同时,深度学习模型大小通常占用大量存储空间并且需要强大的GPU计算能力,然而在大多数的实际应用场景中,无法在设备上放置功能强大的GPU工作站。
因此,需要寻找一种同时具有出色的实时性能和更小的模型尺寸的物体检测算法。YOLO是具有实时性能和高精度的最快的物体检测方法之一,YouOnlyLookOnce(YOLO)自引入以来一直在不断优化,YOLO-V1有两个全连接层和24个卷积层,其规模达到1GB,占用存储空间非常大,对运行平台的性能要求非常高。在此基础上,YOLO-V2删除完全连接的图层并使用锚框来预测边界框,YOLO-V3利用残差结构进一步加深网络层,实现精度的突破,与此同时,YOLO的tiny版本占用的存储空间更少,Tiny-YOLO-V3只有34 MB,达到了前所未有的轻量级,但移动终端的存储容量仍然不小。
但是,目前所有版本的YOLO都无法在嵌入式和移动设备上实现实时性能。YOLO仍然需要在轻量级和实时性方面进行大量改进。根据YOLO的发展趋势和当前的实际应用场景,减少模型参数、减少存储空间和提高精度是当前的发展趋势。如何实现YOLO在嵌入式和移动设备上实现实时和精确的性能,实现多个物体的实时监测,仍是一个重大的挑战。
Highway和ResNet结构中均提出了一种数据旁路(skip-layer)的技术来使得信号可以在输入层和输出层之间高速流通,核心思想都是创建了一个跨层连接来连通网路中前后层,之后由康奈尔大学、清华大学、Facebook FAIR实验室合著的《Densely ConnectedConvolutional Networks》对其进行了详细的阐述,为了最大化网络中所有层之间的信息流,作者将网络中的所有层两两都进行了连接,使得网络中每一层都接受它前面所有层的特征作为输入。由于网络中存在着大量密集的连接,作者将这种网络结构称为Dense连接。Dense连接具有能够减轻梯度弥散的问题,使模型不容易过拟合;能够增强特征在各个层之间的流动,大大减少参数个数,提高了训练效率等优点。
SqueezeNet是在利用现有的基于卷积神经网络(Convolutional NeuralNetworks,CNN)模型并以有损的方式压缩的一种小型模型的网络结构。利用少量的参数训练网络模型,实现模型的压缩。它采用Fire Modle模型结构,分为压缩部分和扩展部分,利用压缩部分和扩展部分相连接形成一种Fire模块中组织卷积过滤器。通常的SqueezeNet开始于一个独立的卷积层(conv1),然后是8个Fire模块,最后是一个最终的转换层(conv10)。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910333785.7/2.html,转载请声明来源钻瓜专利网。





